010P PHARMACOLOGICAL EVIDENCE FOR A KEY ROLE OF VOLTAGE-GATED K⁺ CHANNELS IN THE FUNCTION OF RAT AORTIC SMOOTH MUSCLE CELLS

Sergey V. Smirnov, Paolo Tammaro, Amy L. Smith & Simon R. Hutchings, Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, U.K.

Potassium (K⁺) channels play an important role in the regulation of excitation-contraction coupling in vascular smooth muscle cells (VSMCs). Two major types of K⁺ channel currents, large conductance Ca^{2+} -activated (BK_{Ca}) and voltage-dependent (I_{Kv}), are ubiquitously expressed in VSMCs. While I_{Kv} is mainly activated by membrane depolarisation, BK_{Ca} currents are also stimulated by an increase in intracellular Ca²⁺ concentration ([Ca²⁺]_i) occurring in the presence of vasoconstrictors. The main aim of this study was to investigate a relative contribution of I_{Kv} and BK_{Ca} to the whole cell currents in rat aortic myocytes (RAMs) under increased [Ca²⁺]_i and to phenylephrine-induced contraction of rat aortic rings using selective K⁺ channel pharmacology.

Thoracic aortas were isolated from male Wistar rats (225-300 g) humanely killed. Isometric tension recordings were performed from endothelium-denuded aortic rings (~ 3 mm in length) bathed in Krebs solution of the following composition (mM): 118 NaCl, 25 NaHCO₃, 4.9 KCl, 1.2 KH₂SO₄, 2.5 CaCl₂, 1.2 MgSO₄, 11.7 glucose. Single RAMs were isolated using papain and collagenase (1 mg/ml each). K⁺ currents were recorded with patch clamp technique at room temperature. Pipette solution contained (mM): 110 KCl, 10 NaCl, 5 MgCl₂, 10 HEPES, 10 EGTA and 5 mM CaCl₂ (calculated free [Ca²⁺]=200 nM)and 7 mM CaCl₂ was used to achieve 444 nM [Ca²⁺]. Perforated-patch recordings were performed using 100 µg/ml amphotericin B added to the pipette solution.

 BK_{Ca} and I_{Kv} in the whole cell current were separated using 1 μM paxilline, a selective BK_{Ca} inhibitor. Electrophysiological analysis revealed that I_{Kv} activated at \geq -40 mV, while BK_{Ca} was seen positive to -20 mV in all three conditions. Voltage-dependent characteristics, but not maximal conductance, of I_{Kv} was significantly altered in increased $[Ca^{2+}]_{i}$. The most significant differences were observed in the I_{Kv} steady-state activation in $[Ca^{2+}]_i = 444$ nM (a significant shift by ~8 mV, <0.011P<0.037, unpaired t test). Cell dialysis with elevated $[Ca^{2+}]_i$ also shifted the I_{Kv} availability by ~10 mV (0.008<*P*<0.012, compared to perforate patch recordings). 1 µM correolide (a Kya1 blocker) did not inhibit the IKv. However, the IKv was blocked by tetra ethyl ammonium TEA $(IC_{50}=3.1\pm0.6 \text{ mM}, n=5)$ and by millimolar concentrations of 4-aminopyridine (4-AP). In non-stimulated aortic rings 1-5 mM TEA and 4-AP (inhibitors of I_{Ky}), but not paxilline (1 µM), caused contraction. Phenylephrine (15-40 nM) induced sustained tension with superimposed slow oscillatory waves (OWs) of contraction. OWs were blocked by diltiazem and ryanodine, suggesting the involvement of L-type Ca^{2+} channels and ryanodine-sensitive Ca^{2+} stores in this process. TEA and 4-AP (which block I_{Ky} in RAMs), but not IbTX and paxilline (BK_{Ca} inhibitors) nor correolide, increased the duration and amplitude of OWs. Our findings suggest that I_{Ky} , and not BK_{Ca} , plays an important role in the regulation of excitability of the rat aorta.