069P α_{1A}- ADRENOCEPTOR ISOFORMS DISPLAY DIFFERENT SIGNALLING PROFILES FOLLOWING AGONIST STIMULATION

NM Broxton, BA Evans & RJ Summers. Dept of Pharmacology, Monash University, Clayton, VIC 3800 Australia

The α_1 -adrenoceptor (α_1 -AR) family consists of the α_{1A} , α_{1B} and α_{1D} subtypes. The α_{1A} -AR has been reported to have twelve isoforms, four of which are functional, the others being truncated and non-functional (Chang *et al* 1998). The functional isoforms denoted $\alpha_{1A-1,2,3\&4}$ have similar pharmacological properties and all couple to G_q and signal through the IP₃/DAG pathway (Chang *et al* 1998). Studies with various tissues and recombinant receptors suggest that α_{1A} -AR couple to multiple second messenger pathways including those modulated by PLA₂, PLD, adenylate cyclase, MAP kinase and protein kinase C (Graham *et al* 1996). The current study examined the ability of the four α_{1A} -AR isoforms to activate signalling pathways studied by cytosensor microphysiometry, cAMP accumulation and [³H]arachidonic acid release.

Agonist stimulation of α_{1A} -AR in the cytosensor microphysiometer increased cellular activity, a summation of all the signalling pathways activated by agonist stimulation. All isoforms produced an increase in the extracellular acidification rate (ECAR) to agonists in a concentration-dependent manner. However responses of the α_{1A-2} to A61603 were significantly greater (p<0.05) than all other isoforms (E_{max} value μv sec⁻¹ at 80.8±8.7(4) for α_{1A-2} , 27.9±1.9 (6) for α_{1A-1} , 59.7±5.0 (5) for α_{1A-3} and 33.0±3.0 (4) for α_{1A-4} .) The maximal responses ($\mu v \sec^{-1}$) of the α_{1A} -AR isoforms to noradrenaline $(\alpha_{1A-1}$ -AR: 28.5±2.4 vs 40.5±2.7, (6) P<0.0001), methoxamine (19.4±1 vs 34.5±2.6, (6) P<0.0001) and A61603 (27.4±1.8 vs 36.7±2.7, (4) P<0.0001) were increased following pertussis toxin (PTX, 100ng/ml, 16 hr) treatment. There was no significant effect on the response to the oxymetazoline (P=0.15). Stimulation of cAMP accumulation occurred for the $\alpha_{1A-1,3\&4}$ isoforms in a ligand and concentration dependent manner (E_{max} % forskolin 10^{-4} M, pEC₅₀(n): A61603; α_{1A-1} 51.4±3.1, 8.0±0.3(4); α_{1A-3} 41.4±3.7, 8.8±5.3 (3); α_{1A-4} 38.6±2.1, 7.5±0.1(4)). Oxymetazoline had no significant effect on cAMP accumulation for any of the isoforms (p<0.05). The α_{1A-2} isoform did not produce cAMP accumulation at levels of expression comparable with the other isoforms. cAMP production was PTX sensitive for only the α_{1A-3} -AR with an increase in the maximal response to agonist in the presence of PTX (E_{max} % forskolin 10⁻⁴M: noradrenaline 31.2 ± 4.3 vs 65.09 ± 8.4 (4) (P<0.0001), methoxamine 23.64 ± 3.7 vs 43.3 ± 6.07 (4) (P<0.0001)). Stimulation of arachidonic acid release was also shown to occur for the $\alpha_{1A-1,3\&4}$ isoforms in a concentration-dependent manner with rank orders of agonist potency of cirazoline>noradrenaline>phenylephrine>oxymetazoline for α_{1A-1} and α_{1A-4} and oxymetazoline>noradrenaline>cirazoline>phenylephrine for α_{1A-2} -AR. The α_{1A-2} -AR was unable to stimulate this signalling pathway at levels of expression comparable with the other isoforms (B_{max} fmol mg⁻¹ protein: α_{1A-1} :509±93(5), α_{1A-2} : 237±66(5), α_{1A-3} : 432±74(3), α_{1A-4} : 433±77(5)).

These results confirm that α_{1A} -AR isoforms couple to a number of different signalling pathways, but suggest that these responses are ligand and isoform dependent.

Chang DJ *et al.*, (1998) FEBS Lett. 422: 279-283 Graham RM *et al.*, (1996) Circ Res. 78: 737-49