ACTIVATION OF $G_{Q/11}$ AND G_{I1-3} PROTEINS BY M_1 AND M_3 MUSCARINIC ACETYLCHOLINE (MACH) RECEPTORS: EVIDENCE FOR AGONIST-SPECIFIC RECEPTOR CONFORMATIONS

Mark R. Dowling^{1,2}, Steven J. Charlton², Stefan R. Nahorski¹, R.A. John Challiss¹. ¹Dept. of Cell Physiology & Pharmacology, University of Leicester, LE1 9HN, U.K. and ²Respiratory Disease Area, Novartis Institute for Biomedical Research, Horsham, West Sussex, RH12 5AB, U.K.

The intrinsic activity of agonists to activate M_1 and M_3 mACh receptors stably expressed in CHO cells was assessed using two [³⁵S]-GTP γ S binding methodologies. The total [³⁵S]-GTP γ S binding assay measures the global activation of the cellular G protein population, however, through the use of pertussis toxin (PTx), to prevent receptor-mediated activation of G_i-like G α subunits, inferences about the subclasses of G proteins activated can be made. Agonist-G protein activation profiles were further investigated using an antibodycapture technique (Akam *et al.*, 2001), which permits the potency or intrinsic activity of G $\alpha_{q/11}$ and G α_{i1-3} subunit activation in to be assessed.

Concentration-response curves constructed for total $[^{35}S]$ -GTP γS binding stimulated by methacholine (MCh) in CHO-m1 membranes were biphasic comprising high- and lowaffinity components (pEC₅₀s high, 6.23 ± 0.28 ; low, 4.33 ± 0.05). Pilocarpine failed to cause a significant increase in total $[^{35}S]$ -GTP γ S binding. Following pre-treatment of CHO cells with PTx (100 ng ml⁻¹, 24 h), monophasic increases in [³⁵S]-GTPyS binding stimulated by agonist were observed; with the EC_{50} correlating with the high affinity binding seen in control CHO-m1 membranes (pEC₅₀, 6.26 ± 0.06). Immunoprecipitation of $G\alpha_{q/11}$ following [³⁵S]-GTP γ S binding yielded a similar pEC₅₀ estimate (6.21 ± 0.13) for the MCh-stimulated response, supporting the hypothesis that the M₁ mACh receptor is efficiently couples to $G\alpha_{a/11}$. The improved sensitivity of the antibody-capture method revealed that pilocarpine robustly stimulated $G\alpha_{q/11}$ -[³⁵S]-GTP γ S binding (pEC₅₀, 6.00 ± 0.17). Assessment of $G\alpha_{i1-3}$ -[³⁵S]-GTP γ S binding revealed that only the most efficacious agonists could elicit responses above basal, with pilocarpine ineffective. Thus, agonist activation of the M₁ mACh receptor appears to follow a 'strength-of-signal' model, where agonists activate $G\alpha_{q/11}$ proteins most effectively, only high efficacy agonists active the relatively poorly-coupled $G\alpha_{i1-3}$ proteins.

Total [³⁵S]-GTP γ S binding concentration-response curves constructed for agonistmediated responses in CHO-m3 membranes were shallow, but could not reproducibly be better fitted to a two-site model. Following PTx treatment, maximal agonist-mediated total [³⁵S]-GTP γ S binding responses were reduced indicating again that a heterogeneous population of G proteins is activated, but that the potency differences for PTx-sensitive and -insensitive G α proteins is too small to allow their EC₅₀s to be determined. In agreement, the antibody capture method revealed that a subset of mACh receptor agonists could stimulate robust [³⁵S]-GTP γ S binding to both G $\alpha_{q/11}$ and G_{i1-3} proteins. Although pilocarpine did not stimulate a significant increase in [³⁵S]-GTP γ S-G $\alpha_{q/11}$ binding it did increase [³⁵S]-GTP γ S-G α_{i1-3} binding to approx. 50% of the response evoked by MCh. Therefore, with respect to the M₃ mACh receptor, our data provides some evidence for agonist-specific conformations with different G α subunit activation profiles.

Akam, E.C. et al. (2001) Br. J. Pharmacol., 132, 950-958.