132P Queen Elizabeth II Conference Centre London
BPS Winter Meeting 2011



Quinine blocks 5-HT and 5-HT3 receptor mediated peristalsis in both guinea pig and mouse ileum tissue

Jacqueline Walsh1, Iain Barrett1, Andrew Thompson2, Sarah Lummis2, Stephen Kelley1. 1University of Kent, Chatham Maritime, UK, 2University of Cambridge, Cambridge, UK.


Introduction. Quinine is commonly used to treat malaria; however one of the principal side effects is gastrointestinal disturbances (White, 1992). 5-HT3 receptors modulate gut peristalsis (Chetty et al., 2006), and, as quinine has been shown to act as a 5-HT3 receptor antagonist (Thompson and Lummis, 2008) it is possible that these side effects result from actions at gut 5-HT3 receptors. To address this question, we examined the ability of quinine to antagonise 5-HT and 5-HT3 mediated peristalsis in guinea pig and mouse ileum.

Methods. Ileum was excised from male guinea pigs (200-300g) and C57BL/6 mice (25-35g) following cervical dislocation. Ileum segments (3-5 cm) were mounted in 50 ml organ baths containing Tryode’s solution at 35-37 °C. Concentration-response curves were constructed for 5-HT and the selective 5-HT3 agonist 2-Me-5-HT (non-cumulative doses). Quinine was pre-applied for 10 min and inhibition measured using agonist concentrations that elicited a submaximal response.

Results. Concentration-dependent contractions produced by 5-HT (pEC50 = 5.45 ± 0.17, n = 8) and the selective 5-HT3 agonist 2-Me-5-HT (5.01 ± 0.17, n = 11) were not significantly different (Student’s t-test, t = 0.619, df = 17, p = 0.544) in guinea pig ileum. Increasing concentrations of quinine were able to antagonise the activities of both 5-HT (pIC50 = 5.03 ± 0.2, n = 6) and 2-Me-5HT (pIC50 = 4.59 ± 0.26, n = 4). At mouse ileum, 5-HT (pEC50 = 7.57 ± 0.33, n = 9) was more potent (Student’s t-test, t = 3.6, df = 12, p = 0.004) than 2-Me-5-HT (pEC50 = 5.45 ± 0.58, n = 5). Quinine antagonised both the 5-HT (pIC50 = 4.87 ± 0.31, n = 7) and 2-Me-5-HT-induced (pIC50 = 6.18 ± 1.14, n = 4) contractions.

Conclusions. These results support previous electrophysiological studies that identified quinine as an antagonist at recombinant 5-HT3 receptors with IC50 values comparable with those reported here (pIC50 = 4.87, Thompson et al., 2007). Further, we found that quinine completely blocked 5-HT induced contractions in mouse and guinea pig, raising the possibility that quinine targets other 5-HT receptors in the gut (e.g., 5-HT4 receptors) and may influence intestinal function.


Chetty et al., (2006). Br.J.Pharmacol., 148; 112-141.

Thompson et al., (2007). Br.J.Pharmacol 151; 666-667.

Thompson and Lummis, (2008). Br.J.Pharmacol 153; 1686-96. White, (1992). BJCP, 34; 1-10.