INFLUENCE OF β_1 -ADRENOCEPTOR POLYMORPHISMS ON THE EXPRESSION OF β_1 -ADRENOCEPTORS IN HUMAN LUNG TISSUE

L.J. Kay¹, S.K. Suvarna², R. Chess-Williams³ and P.T. Peachell¹. ¹Academic Unit of Clinical Pharmacology, University of Sheffield. ²Histopathology, Northern General Hospital, Sheffield. ³Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia.

Human lung tissue contains both β_2 - and β_1 -adrenoceptors at a reported ratio of 4:1 (Sano *et al.*, 1993). However, previous work within our group has shown extensive variability in the expression of β -adrenoceptors in human lung. The possibility that genetic polymorphisms in β -adrenoceptor genes might influence receptor expression has been explored. A statistically significant (*P*<0.05) association between a single nucleotide polymorphism (SNP) in the β_2 -adrenoceptor gene (491 C>T) and β_2 -adrenoceptor expression has been observed in human lung tissue (data unpublished). The aim of the present study was to determine whether a similar association might exist between two common SNPs (145 A>G (Ser49Gly) and 1165 C>G (Arg389Gly)) in the β_1 -adrenoceptor expression.

Human lung tissue (n=78) was obtained from surgical resections. Saturation binding assays using ¹²⁵I-iodocyanopindolol (0.0156 - 2 nM) were performed on membrane fractions of lung tissue and specific binding assessed using methods that have been described (Nishikawa *et al.*, 1996). Discrimination of β_2 - and β_1 -adrenoceptors was determined using the selective β_1 -adrenoceptor antagonist, CGP20712A (0.01 μ M). For genotypic analysis, genomic DNA was extracted from a small amount of human lung tissue, and genotype determined by PCR-RFLP using the restriction enzymes *Eco*0109I (145 A>G) or *Bsm*FI (1165 C>G). Data were analysed using GraphPad Prism software. Statistical significance was determined using either Mann-Whitney or Kruskal-Wallis tests.

In human lung tissue (n=78), β_1 -adrenoceptor densities ranged from 0 to 46 fmol mg⁻¹ protein (mean±s.e.m; 8±1 fmol mg⁻¹ protein). All 78 preparations were genotyped at positions 145 and 1165 of the β_1 -adrenoceptor gene. Both SNPs where shown to be in Hardy-Weinberg equilibrium, as evaluated by χ^2 goodness of-fit-tests. Since only 2 preparations were found to express the less common allele at position 145, these data were not included in the statistical analysis. Neither position 145 A>G, nor 1165 C>G appeared to influence β_1 -adrenoceptor density (*P*>0.05; see table 1).

Table 1	Nucleotide position						
	145			1165			
	Α	A/G	G	С	C/G	G	
n	63	13	2	41	33	4	
β_1 -adrenoceptor density (fmol mg ⁻¹ protein)	8±1	10±3	1 & 3	8±1	8±2	5±3	

To conclude, preliminary findings suggest that, although there is extensive interindividual variability in β_1 -adrenoceptor densities in lung, this is not influenced by SNPs 145 A>G or 1165 C>G of the β_1 -adrenoceptor gene.

Nishikawa, *et al.*, (1996). *Eur J Pharmacol*, **318**,123-129 Sano, *et al.*, (1993). *Life Sciences*, **52**, 1063-70