Binding kinetics of a novel muscarinic antagonist, [³H]GSK573719: A comparison to [³H]tiotropium.

Rob Slack, Vikki Barrett, William Rumsey. ¹Respiratory TAU, GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK, ²Respiratory TAU, GlaxoSmithKline, King of Prussia, PA19406, USA

GSK573719 is a potent, pan-active muscarinic cholinergic receptor (mAChR) antagonist that demonstrates slow functional reversibility *in vitro* and long duration of action *in vivo* when administered directly to the lungs. GSK573719 may be suitable for use as a once-daily antibronchoconstrictive agent for COPD and is being progressed into humans. In this report (funded by GlaxoSmithKline) we describe the pharmacological characterisation of the binding kinetics of [³H]GSK573719 and [³H]tiotropium to the human mAChR subtype M₂ or M₃ stably expressed in chinese hamster ovary (CHO) cells.

Radioligand binding experiments were conducted using either [³H]GSK573719 or [³H]tiotropium exposed to membrane fragments obtained from CHO cells expressing the human recombinant M₂ or M₃ mAChR at 37°C in binding buffer (50mM HEPES, pH 7.4). Non-specific binding was determined by addition of 10µM atropine. Saturation, association, and dissociation binding studies were performed to determine receptor binding kinetics at the M₂ and M₃ mAChR (equilibrium dissociation constant (K_D), total number of receptors (B_{max}), association rate (k_{on}), dissociation rate (k_{off}), and dissociation half-life ($t_{1/2}$)). Dissociation was initiated by a 1:20 dilution in binding buffer (containing 10µM atropine). All data shown are mean ± SEM, n=4.

Radioligand	$M_2 pK_D$	M ₂ B _{max} (pmol/mg)	$M_3 p K_D$	M ₃ B _{max} (pmol/mg)	
[³ H]GSK573 719	9.79 ± 0.08	2.53 ± 0.25	$\begin{array}{ccc} 10.5 & \pm \\ 0.01 & \end{array}$	5.01 ± 0.10	
[³ H]tiotropiu m	$\begin{array}{ccc} 10.3 & \pm \\ 0.08 & \end{array}$	1.98 ± 0.04	$\begin{array}{ccc} 10.7 & \pm \\ 0.07 & \end{array}$	3.93 ± 0.15	

Table 1. The receptor saturation binding parameters for $[^{3}H]GSK573719$ and $[^{3}H]tiotropium at human M_{2} and M_{3}$ receptors.

Specific binding data from saturation experiments were fitted to a one affinity site model and this analysis resulted in pK_D and B_{max} values shown in Table 1. [³H]GSK573719 and [³H]totropium both exhibited sub-nM affinity for M₂ and M₃ mAChRs. A comparable affinity for the M₃ receptor was exhibited for both these radioligands whilst [³H]GSK573719 had a marginally greater selectivity for the M₃ over the M₂ receptor (~5-fold) compared with [³H]totropium (~3-fold). The B_{max} values for [³H]GSK573719 and [³H]totropium at both the human M₂ and M₃ mAChR were similar suggesting that both radioligands were labelling the same population of receptors.

Radioligan	$\begin{array}{c c} \mathbf{M}_2 & k_{\text{on}} & \mathbf{M} \\ \mathbf{M}_2 & \mathbf{M}_2 & \mathbf{M}_2 \end{array}$	$M_2 k_{\rm off}$	$\begin{array}{c c} \mathbf{M}_2 & t_{1/2} \\ \mathbf{min} \end{array}$	$\begin{array}{c c} \mathbf{M}_3 & k_{\text{on}} & \mathbf{M}^{-1} \\ \mathbf{M}_3 & \mathbf{M}^{-1} \end{array}$	$\begin{array}{c c} \mathbf{M}_3 & k_{\mathrm{off}} \\ \mathbf{min}^{-1} \end{array}$	$M_3 t_{1/2}$
u	11111	11111	111111	11111	11111	111111

[³ H]GSK57 3719	$2.22 \pm 0.11 \\ x \ 10^9$	$\begin{array}{c} 0.074 & \pm \\ 0.004 & \end{array}$	9.4 0.5	+	$5.67 \pm 0.45 \\ x \ 10^8$	0.0089 ± 0.0012	82.2 ± 11.3
[³ H]tiotropi um	$\frac{1.26}{x} \pm 0.10 \\ \frac{10}{2}$	0.023 ± 0.008	39.2 : 9.7	+	$4.09 \pm 0.55 \\ x \ 10^8$	$\begin{array}{c} 0.0026 \\ 0.0003 \end{array} \ \pm \end{array}$	272.8 ± 27.6

Table 2. The receptor binding kinetic parameters for $[{}^{3}H]GSK573719$ and $[{}^{3}H]tiotropium$ at human M₂ and M₃ receptors.

Comparable values of k_{on} were obtained for the two radioligands at each receptor subtype although [³H]GSK573719 and [³H]tiotropium associated more rapidly with the M₂ mAChR than with the M₃ mAChR (Table 2). [³H]GSK573719 and [³H]tiotropium dissociated faster from the M₂ mAChR than the M₃ mAChR, however dissociation of [³H]GSK573719 from the M₂ mAChR was faster (~4-fold) than that of [³H]tiotropium. The $t_{1/2}$ values for dissociation of [³H]tiotropium were much longer at both receptors.

In summary, $[{}^{3}H]GSK573719$ exhibited a high affinity for both the M₂ and M₃ mAChR with a marginally greater selectivity for M₃ over the M₂ sub-type when compared with $[{}^{3}H]$ tiotropium. The slow dissociation kinetics of $[{}^{3}H]GSK573719$ at the M₃ mAChR are consistent with a long duration of action.