A Role For The Sodium Pump In Hydrogen Peroxide-Induced Relaxation In The Porcine Isolated Coronary Artery

PS Wong, RE Roberts, MD Randall. University of Nottingham, Nottingham, UK

Hydrogen peroxide (H₂O₂) has been proposed to act as an endothelium-derived hyperpolarising factor (EDHF) in human, rat, mouse, porcine and canine arteries (Shimokawa, 2010 Pflugers Arch 459(6):915-922, Wheal et. al., 2012 Eur J Pharmacol 674(2-3):384-390). In disease states, EDHF may act as a 'back up' system to compensate the loss of the nitric oxide pathway (Luksha et al., 2009 Atherosclerosis 202(2):330-344). Here, the mechanism of action of exogenous H₂O₂ in porcine coronary arteries (PCAs) isolated from female pigs and the role of H_2O_2 as an EDHF in the cardiovascular system were investigated. Distal PCAs were mounted in a wire myograph, pre-contracted with U46619 (2nM-50µM), a thromboxane A_2 mimetic or KCl (60mM) to examine the role of H_2O_2 as an EDHF. Concentration-response curves to H₂O₂ (10nM-1mM), bradykinin (0.01nM-1µM), sodium nitroprusside (SNP) (10nM-10µM) or verapamil (1nM-10µM) were constructed. L-NAME (300µM) and indomethacin (10µM) were used to inhibit the synthesis of NO and prostanoids respectively. PEG-catalase (300Uml⁻¹) was used to breakdown H_2O_2 and carbenoxolone (100µM), a gap junction inhibitor was used to study the role of gap junctions. Tetraethylammonium (TEA) (10mM) was used as a non-selective potassium (K^+) channel inhibitor and glibenclamide (1µM) was used as an ATP-sensitive K⁺ channel inhibitor. Apamin (500nM), TRAM-34 (10µM) and iberiotoxin (100nM), small, intermediate and largecalcium activated K^+ channels inhibitors respectively were used to examine the role of K^+ channels in the H₂O₂-induced relaxation. Ouabain (500nM) was used to inhibit the sodiumpotassium pump activity and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10µM) was used to selectively block guanylyl cyclase activity. Data were analysed using 2-tailed, paired Student's t-test or one-way ANOVA, followed by Bonferroni's post hoc test. H₂O₂ caused concentration-dependent relaxations with a maximum relaxation (R_{max}) of 99.8±11.5% pEC₅₀=4.17±0.15, (mean±SEM), n=4) and removal of endothelium $(R_{max}=97.8\pm3.5\%, pEC_{50}=3.96\pm 0.03, n=5)$ produced a comparable curve to the control supporting previous report that H₂O₂-induced relaxation is endothelium-independent. Addition of L-NAME and indomethacin (R_{max}=87.5±2.7%, pEC₅₀=7.6±0.05,n=5), in the absence or presence of carbenoxolone ($R_{max}=94.4\pm8.0\%$, pEC₅₀=4.08± 0.10, n=4), ODQ glibenclamide $(R_{max}=127\pm25\%, pEC_{50}=3.7\pm0.2, n=4),$ (Relaxation at 1mM H_2O_2 $(R)=97.7\pm2.1\%$, pEC₅₀=4.1±0.04, n=6), barium (R=103.9± 3.8\%, n=5), iberiotoxin (R_{max}) =119 \pm 16%, pEC₅₀=3.8 \pm 0.2,n=4), TRAM-34 (R_{max}=99.7 \pm 6.8%,pEC₅₀ =3.8 \pm 0.07,n=6) or apamin ($R_{max}=105\pm6.9\%$, pEC₅₀=3.9±0.06,n=6) had no effect on the H₂O₂-induced relaxation. TEA caused a 2.5-fold shift in the H₂O₂-induced relaxation (P<0.05) while high extracellular K⁺ (R=40.8±8.5%,n=5) or ouabain (R=47.5±8.6%,n=6) significantly inhibited the H₂O₂-induced relaxation (P<0.05). PEG-catalase significantly inhibited the relaxation at higher concentration of H₂O₂ (0.1-1.0mM) (P<0.05). Ouabain (Relaxation at 1µM of bradykinin R=8.88±3.31%,n=7) significantly inhibited the bradykinin-induced relaxation (P<0.05) in the presence (R=70.1±10.8%,n=7) and absence (R=100.7±0.5%, n=7) of L-NAME and indomethacin. Ouabain (n=6) caused a significant rightward shift (20-fold) in the concentration-response curve to SNP. Ouabain had no effect in the verapamil-induced relaxation (n=6). In conclusion, the relaxation induced by H_2O_2 is primarily mediated via ouabain-sensitive sodium-potassium pumps in the porcine coronary artery.