Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol12Issue1abst028P.pdf

Agonist Regulation of Muscarinic M₂/M₃ Receptor Heteromer and M₂ Homomer Stability, but not of the Corresponding M₃ Homomer

D Aslanoglou, E Alvarez Curto, G Milligan. University of Glasgow, Glasgow, UK

Muscarinic receptors (M_1 - M_5) belong to class A of the G protein coupled receptor (GPCR) family. There is growing evidence that many GPCRs exist as dimers or higher-order oligomers (1) and muscarinic receptors are no exception (2). Herein, as for the co-existence of homomers and heteromers of the dopamine D_2 and D_3 receptors (3) we demonstrate such combinations of co-expressed human M_2 (hM_2WT) and a RASSL (Receptor Activated Solely by Synthetic Ligand) form of the human M_3 receptor (hM_3RASSL) using N-terminal SNAP and CLIP tags in combination with homogeneous time resolved FRET (HTRF) (3). Stable Flp-InTM T-RExTM 293 cell lines able to inducibly express each of these receptor forms upon addition of doxycycline, and a cell line able to express both hM_3RASSL constitutively and hM_2WT in a doxycycline inducible manner were generated.

In these cells both hM_3RASSL and hM_2WT were detected after treatment with different concentrations of doxycycline via Western Blots using tag-specific antibodies. Radioligand binding using [³H]-QNB indicated that similar amounts of hM₂WT and hM₃RASSL were expressed following induction with 5 ng.ml⁻¹ doxycycline; B_{max} (no dox) = 2603 ± 200 fmol.mg protein⁻¹; B_{max} (+ dox) = 5465 ± 244 fmol.mg protein⁻¹). Following induction with doxycycline each of hM_2WT and hM₃RASSL homo-oligomers and hM₂WT-hM₃RASSL heteromers were identified. Unlike the corresponding homo-oligomers in cells expressing either receptor alone, occupancy of hM_2WT-hM_3RASSL heteromers with the hM_2WT agonist carbachol resulted in a marked, time and concentration-dependent (pIC₅₀= 5.2 ± 0.25) decrease in detected heteromers and a concomitant, concentration-dependent (pEC₅₀ = 5.5 \pm 0.2) increase in hM_2WT homomers. The formation of hM_2WT - hM_3RASSL heteromers was significantly decreased (P=0.007) by 1.2 fold in the presence of 1 mM carbachol, and by 1.3 fold when 1 mM carbachol was added in the presence of 100 μM CNO (P=0.037). There was a 2.3 fold increase detected in the hM₂WT homomers, in the presence of 1mM carbachol (P=0.0002) or 1 mM carbachol and 100 µM CNO together (P=0.001).

Despite the presence of hM_2WT - hM_3RASSL heteromers the functional pharmacology of hM_2WT and hM_3RASSL receptor specific agonists (carbachol and clozapine N-oxide respectively) were largely unaltered.

- 1. Milligan G, Mol Pharmacol 84:158, 2013
- 2. Alvarez-Curto E et al, J Biol Chem 285:23318, 2010
- 3. Pou C et al, JBC 287:8864, 2012