Characterising the functional kinetics of OX_1 antagonists using a novel fluorometric imaging plate reader (FLIPR) assay

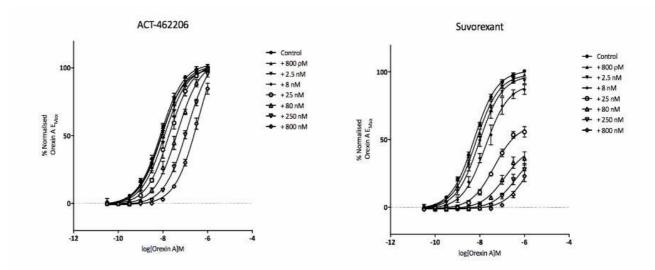
S. Groom^{1,2}, R. Mould¹, K. Bennett¹, M. Barnes¹, A. Brown¹. ¹Heptares Therapeutics, Welwyn Garden City, UNITED KINGDOM, ²Department of Pharmacy and Pharmacology, University of Bath, Bath, UNITED KINGDOM.

Introduction: Mounting evidence has shown that a compound's kinetic properties can influence its duration of clinical action¹. However, despite the potential benefits of tailoring the kinetic properties of preclinical compounds, optimisation of such parameters has been hindered by the limitations of traditional assay techniques. The aim of this study was to evaluate the kinetic properties of unlabelled orexin-1 receptor (OX₁) antagonists using a functional assay.

Methods: The ability of OX₁ antagonists (80µM - 2.5nM) to inhibit the responses to an EC₈₀ of orexin-A ligand was tested in CHO cells stably expressing OX₁. Antagonist activity was assessed after a 5 minute antagonist preincubation period (37[°]C) and in coaddition with the orexin-A challenge. Antagonist potency was calculated using a modified Cheng-Prussoff equation and the difference in antagonist potency between the two assays (α fp K_B) was used as an estimate of antagonist association rate (k_{on}). In order to characterise antagonist dissociation rate (k_{off}), Schild analysis was conducted by performing concentration-response curves of orexin-A (1µM - 31.6pM) in the presence of the OX₁ antagonists ACT-462206 and suvorexant (800nM - 800pM, 5 minute preincubation) (37[°]C). Kinetic profiling of unlabelled antagonists was generated in SF21 cell membranes expressing OX₁ using Motulsky-Mahan radioligand binding methods¹, using [³H]-SB-674072.

Results: Although for a number of antagonists, including ACT-462206 and almorexant, $\alpha fp K_B$ was in line with k_{on} , there was no coherent link observed between the two parameters across a wider range of antagonists. ACT-462206 displayed fully surmountable antagonism, whereas suvorexant caused concentration-dependent depression of the maximal orexin-A responses. The dissociation kinetics of suvorexant were much slower than those of ACT-462206, with k_{off} values of 0.0068±0.0003min⁻¹ and 0.64±0.12min⁻¹ (mean±SEM, *n*=3) respectively.

Conclusions: While studies into association rates yielded unclear results, pseudo-insurmountability in Schild experiments appeared to correlate with k_{off} , in line with previous studies². This demonstrates that dissociation kinetics can be qualitatively assessed using a widely available assay technology, providing a functional platform to optimise for desirable compound kinetics early in the drug discovery process.


References:

(1)

- Dowling MR and Charlton SJ (2006). Br J Pharmacol 148:927-937.

(2)

- Mould R et al. (2014). Br J Pharmacol 171:351-363.

Figure 1. The effect of increasing concentrations of ACT-462206 and suvorexant on orexin-A concentration-response curves in CHO-OX₁ cells. Data are representative of mean \pm SEM, *n*=3.

Compound	OX ₁ Preincubation fp <i>K</i> _B	OX₁ Coaddition fp <i>K</i> _B	∆fp <i>K</i> _B	<i>k</i> ₀n (µM⁻¹.min⁻¹)
Almorexant	7.37±0.15	<4.10	>3.27	0.27±0.02
ACT-462206	7.69±0.12	7.20±0.15	0.49	19.45±2.41

Table 1. Antagonist activity in preincubation and coaddition FLIPR assays. Data are representative of mean \pm SEM, *n*=3.