Perinatal neuroprotection of cannabidiol-treated developing rats after repeated bicuculline-induced seizures

F. J. Alvarez¹, H. Lafuente¹, A. A. Alvarez², E. Hilario², W. Hind³, J. Martinez-Orgado⁴. ¹Biocruces Institute, Cruces University Hospital, Barakaldo, Spain, ²Cell Biology and Histology, University of the Basque Country, Leioa, Spain, ³GW Research, Histon, Cambridge, United Kingdom, ⁴Instituto del Niño y del Adolescente (INA), Hospital Clínico "San Carlos" - IdISSC, Madrid, Spain.

Introduction: Seizures represent a frequent adverse neurological event in newborns, causing brain damage with long-lasting impairment of cognition and behavior¹. Since cannabidiol (CBD) has demonstrated neuroprotection in experimental neonatal hypoxic-ischemic brain damage², our aim was to test whether early CBD treatment improves long-term neuroprotective outcome of developing rats exposed to bicuculline-induced seizures.

Method: Rat pups (P5) received bicuculline as seizure inductor during three consecutive days at 2-4 mg/kg intraperitoneal dose³. Pups were randomized to receive placebo solution (VEH group) or CBD (GW Research, Cambridge UK) at 1, 10 and 100 mg/kg/day for 3 days (CBD1, CBD10, CBD100 groups). Pups without seizure or drug treatment were used as reference (SHAM group). Brain damage was assessed at juvenile stage (P37) in function of neuropathological score⁴ (hippocampus and cortex), electroencephalography and cognitive deficit (sensori-motor tests: RotaRod, cylinder rearing test; learning & memory tests: T-maze, novel object recognition). Data are given as mean±SEM (sample size). Analysis was performed using Kruskal-Wallis test with Dunn's correction.

(a) p<0.05 vs. SHAM; (b) p<0.05 vs. VEH; (c) p<0.05 vs CBD1; (d) p<0.05 vs CBD10					
Table 1	SHAM	VEH	CBD1	CBD10	CBD100
Neuropathological score:	0.4±0.3	2.1±0.2 ^a	1.9±0.2 ^a	1.5±0.2 ^{a,b}	0.6±0.3 ^{b,c,d}
hippocampus	(10)	(10)	(10)	(10)	(10)
Neuropathological score:	0.4±0.3	2.4±0.3 ^a	2.3±0.3 ^a	1.9±0.3 ^a	0.8±0.2 ^{b,c,d}
cortex	(10)	(10)	(10)	(10)	(10)
Electroencephalography (μV)	18±1	15±1 ^a	15±2	16±2	17±2
	(10)	(20)	(20)	(20)	(20)
Rotarod:	259±12	189±14 ^a	207±10 ^a	216±21 ^a	234±9 ^{b,c}
latency to fall (sec)	(10)	(20)	(20)	(20)	(20)
Cylinder rearing test:	-0.3±0.5	1.8±1.9	-0.3±1.4	0.9±2.6	0.5±1.4
preference for left (%)	(10)	(20)	(20)	(20)	(20)
T-maze:	64±8	36±9 ^a	43±10 ^a	50±5	52±5 ^b
correct response (%)	(10)	(20)	(20)	(20)	(20)
Novel object recognition:	0.52±0.02	0.40±0.04 ^a	0.41±0.04 ^a	0.47±0.02 ^{a,b}	0.50±0.02 ^{b,c}
discrimination index	(10)	(20)	(20)	(20)	(20)

Results: Data of P37 rats with seizure brain damage and CBD treatment are summarized in table 1.

Bicuculline-treated pups showed tonic-clonic seizures after 10 min, which continued for 1.5- to 2 hours. VEH group developed a long-term bicuculline-induced functional impairment, as observed in the neuropathology, electroencephalography and neurobehavioral tests. CBD treatment partially reversed neurophysiological and neurofunctional sequelae of seizures.

Conclusion: Bicuculline-induced repetitive seizure in neonatal period produced a long-term functional impairment, which was evident at juvenile stage. Although, the bicuculline model did not induce significant alterations compared to sham for some of the parameters, a clear neuroprotective role of CBD was present at

100 mg/kg, maintaining structural and functional brain parameters (histology, learning, memory, motor coordination). Also, limited improvements were observed at 10 mg/kg CBD dose.

References:

- 1. Ronen GM et al. (2007). Neurology 69: 1816-1822.
- 2. Alvarez FJ et al. (2008). Pediatr Res 64: 653-658.
- 3. Doriat JF et al. (1998). Brain Res 800: 114-124.
- 4. Pazos MR et al. (2012). Neuropharmacology 63: 776-783.