A CELL-BASED ASSAY TO MEASURE THE DURATION OF ACTION OF $\beta 2$ ADRENORECEPTOR AGONISTS AT THE HUMAN RECEPTOR

Susan Summerhill, Tim Stroud, Mike Trevethick & Christelle Perros-Huguet Allergy & Respiratory Biology, Pfizer Global R&D, Sandwich, UK.

Current *in-vitro* methods for determining duration of action of $\beta 2$ adrenoreceptor agonists typically involve guinea-pig isolated trachea strips in organ bath systems (Coleman *et al* 1989 and 1996) and are often labour intensive and time consuming. We have developed and characterised a cell-based "wash off" assay to assess the duration of action of $\beta 2$ adrenoreceptor agonists in Chinese Hamster Ovary cells recombinantly expressing the human $\beta 2$ adrenoreceptor (CHOh $\beta 2$).

CHOhβ2 cells were seeded in 96-well Viewplates (Perkin Elmer) at $0.2x10^6$ cells/well in 1% FBS/DMEM-F12 over night at 37° C. Concentration effect curves to β2 adrenoreceptor agonists following a 30-minute incubation at 37° C were constructed by measuring increases in intracellular cAMP levels using a HitHunter cAMP II TM assay (DiscoveRx). EC₅₀ values (concentration of agonist needed to produce half the maximal response to that agonist) for cells stimulated with agonist (unwashed) were compared to EC₅₀ values generated in cells exposed to agonists for 30 minutes, washed with PBS and incubated in agonist free media for a further 30 minutes prior to cAMP determination (washed). For ease of comparison, unwashed and washed EC₅₀ values for each compound were used to generate a fold rightward shift (RWS) on washing (RWS = EC₅₀ washed / EC₅₀ unwashed).

The $\beta 2$ adrenoreceptor agonists caused a concentration related increase in intracellular cAMP with rank order of potency: Formoterol > Salmeterol > Isoprenaline > Salbutamol (see *Table 1*). On washing, the EC₅₀ values of the short-acting $\beta 2$ agonists Salbutamol and Isoprenaline shifted significantly (p< 0.01) to the right, whereas the longer-acting $\beta 2$ agonists Formoterol and Salmeterol produced smaller shifts indicating they were more resistant to washing.

	Unwashed EC ₅₀ nM	Washed EC ₅₀ nM	Fold RWS
Salbutamol	25.963 (16.6 – 40.7)	>23051 ^a (8144 – 65244)	$>2003^{b}(205-3847)$
Isoprenaline	5.13 (3.14 – 8.39)	1357 ^a (977 – 1885)	$256^{b}(175 - 373)$
Formoterol	0.076 (0.043 - 0.136)	$1.941^{a}(1.25 - 3.01)$	$27.31^{b}(12.53 - 51.45)$
Salmeterol	1.512 (0.877 – 2.608)	1.923(1.028 - 3.598)	1.32 (1.013 – 1.598)

Table 1.Comparison of Unwashed and Washed EC_{50} curves. Data are geometric mean and 95% confidence interval values from n=4-9, ^a p<0.01 difference between washed and unwashed EC_{50} , ^b p<0.01 RWS different from Salmeterol (using ANOVA).

Salbutamol, Isoprenaline, Formoterol and Salmeterol produce statistically distinct washout profiles suggesting that this cell-based assay could be used to rank novel $\beta 2$ adrenoreceptor agonists on their potency and duration of action prior to any tissue or *invivo* determinations. Further experiments are underway to try and determine if the long duration of action is due to "exosite" binding, slow receptor offset or membrane affinity.

Coleman RA *et al.* (1989) *J. Pharmacol Methods*, **21**: 71-86. Coleman RA *et al.* (1996) *Pulm. Pharmacol.*, **9**: 107-117.