ACTIVATION OF PROTEASE-ACTIVATED RECEPTOR-2 (PAR-2) INDUCES CARDIOPROTECTION IN ANAESTHETISED MICE

S.Y. Lim¹, C.L. Wainwright², S. Kennedy¹, K.A. Kane¹. ¹Department of Physiology & Pharmacology, University of Strathclyde, Glasgow G4 0NR, U.K. ²School of Pharmacy, The Robert Gordon University, Aberdeen AB10 1FR, U.K.

PAR2 activation has been shown to mediate cardioprotection in isolated rat hearts (Napoli *et al.*, 2000). The present study aimed to determine whether the PAR2 agonist, trypsin and the activating peptide (SLIGRL-NH₂, SL-NH₂), could protect the heart from acute myocardial ischaemia and reperfusion injury (MIRI) *in vivo*. To confirm an action through PAR2, studies were performed in wild type (PAR2+/+) and PAR2 knockout (PAR2-/-) mice. The adenosine A₁ receptor agonist, 2-chloro-N⁶-cyclopentyl-adenosine (CCPA), was studied as a cardioprotective agent acting via a PAR2 independent mechanism.

PAR2-/- mice were produced by back-crossing 5 times with C57BL/6 mice and the knockout confirmed by genotyping. 14-16 week old PAR2+/+ and PAR2-/- mice (18-34g) were anaesthetised with a combination of ketamine, xylazine and atropine (intraperitoneally) and artificially ventilated with O₂. The left anterior descending coronary artery was ligated to induce 30 min of occlusion followed by 120 min of reperfusion. Infarct size was assessed by Evan's blue-triphenyltetrazolium chloride dual staining. Mice were pre-treated with a bolus dose (0.05 ml/ 25 g) of saline (vehicle control), trypsin (1 U/g), SL-NH₂ (0.3 nmol/g) or CCPA (100 ng/g) intravenously via the tail vein 24-hour prior to surgery. Statistical significance was assessed using one way ANOVA with Dunnett's post-hoc test.

A significant reduction in infarct size (expressed as percentage of the area at risk, AAR) was observed in PAR2+/+ mice pre-treated with trypsin ($49\pm3\%$; n=11), SL-NH₂ ($41\pm4\%$; n=10) and CCPA ($39\pm4\%$; n=10) when compared to the vehicle control ($59\pm2\%$; n=14). These effects of trypsin and SLIGRL-NH₂ were not seen in PAR2-/- mice ($58\pm5\%$ (trypsin, n=7), $59\pm2\%$ (SL-NH₂, n=6) vs. $56\pm4\%$ (saline, n=9); p>0.05), although CCPA still reduced infarct size ($41\pm4\%$, n=8; p<0.05). The AAR was similar in hearts from all groups. In untreated mice, PAR2 deletion by itself did not modify infarct size ($56\pm3\%$ vs. $54\pm5\%$ in PAR2+/+ (n=11) and PAR2-/- (n=12) mice respectively; p>0.05). The respective control arterial blood pressures (mmHg) and heart rates (beat per minute) in PAR2+/+ (123 ± 5 and 388 ± 14) and PAR2-/- (132 ± 5 and 407 ± 10) mice, prior to coronary artery occlusion, were not significantly modified by pre-treatment with trypsin, SL-NH₂ or CCPA.

We conclude that exogenously applied trypsin and SL-NH₂ have a cardioprotective action on MIRI in the mouse and this effect is PAR2 mediated as demonstrated by the lack of a response in the PAR2-/- mice. However, infarct size was not modified by deletion of the PAR-2 itself.

Napoli C. et al. (2000). Proc. Natl. Acad. Sci. USA. 97: 3678.

S.Y. Lim holds an ORS & Strathclyde University studentship. PAR2 mice and PAR-2 activating peptide are courtesy of Prof. Robin Pelvin.