A cooperative cardioprotective effect of adenosine A_1 and A_{2a} receptor agonism in ischemia-reperfusion damage in the isolated perfused mouse heart

Vijay Urmaliya¹, Colin Pouton¹, Ian Coupar¹, Jennifer Short¹, Catherine Ledent², Paul White¹. ¹Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, VIC, Australia, ²Faculte de Medecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Nucle´aire, Universite´ Libre de Bruxelles, Brussels, Belgium.

Adenosine A₁ agonist (CPA) ameliorates necrotic damage in a cardiac cell line after simulated ischemia by a cooperative effect on adenosine $A_{2A/2B}$ receptors¹. In the present study, we investigated whether this cooperative effect was seen in mouse hearts using a Langendorff preparation with an ischemia-reperfusion protocol. Langendorff isolated perfused CD1 A2A knockout (KO) and wild-type (WT) mouse hearts were subjected to no-flow global ischemia (30 min) and reperfusion (60 min) at constant pressure (80 mmHg). Cardiac troponin I (cTn I) and lactate dehydrogenase (LDH) release were measured by collecting cardiac effluent before ischemia and at the end of reperfusion. Adenosine A1 and A2A cooperative cardioprotective signalling was assessed by extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Both wild-type and A_{2A}KO mice were treated with adenosine A₁ agonist CPA (100nM) added at reperfusion, either in presence of adenosine A1 antagonist (DPCPX, 1µM) or adenosine A2A antagonist (ZM241385, 50nM) or adenosine A_{2B} antagonist (MRS1754, 100nM). A significant increase in the infarct size was observed in $A_{2A}KO$ compare to WT mice (26.75 ± 1.78 and 18.69 ± 5.21 % of area at risk respectively, p<0.05). CPA treatment significantly reduced infarct size in WT animals. Treatment with ZM241385 worsened left ventricular developed pressure (LVDP) recovery in WT but, as expected, not in $A_{2A}KO$ mice (72.02 ± 22.50% and 17.60 ± 2.83% change from baseline for CPA vs. 5.48 ± 5.48 and 41.86 ± 19.34% change from base line for CPA + ZM241385 in WT and A_{2A}KO mice at 70 min respectively, p<0.05). In contrast, MRS1754 worsened LVDP recovery in both A_{2A} KO and WT mice (72.02 ± 22.50% change from baseline for CPA vs. 5.06 ± 3.68% change from baseline for CPA + MRS1754 in WT mice at 70 min, p<0.05). Conversely, adenosine A_1 antagonist (DPCPX) caused a bigger reduction in contractility (dP/dt_{max}), in A_{2A} KO compare to WT mice. In WT mice CPA and CPA + CGS21680 significantly reduced cTn I level (2.84 \pm 0.59 and 4.97 \pm 0.08 ng/ml vs. 11.99 \pm 1.06 ng/ml in control, p<0.05). In A₂₄KO CPA + CGS21680 did not reduced the cTn I release. In WT mice LDH release reduced significantly $(4.73 \pm 0.04, 6.68 \pm 0.51\%$ cytotoxicity in CPA and CPA + CGS21680 groups vs. 14.03 \pm 1.92% cytotoxicity in control group, p<0.05), however in A_{2A}KO mice no significant difference was observed. In WT mice CPA treatment increased ERK1/2 phosphorylation (1.53 ± 0.26 pERK/ERK1/2 in CPA vs. 0.83 ± 0.06 pERK/ERK1/2 in control, p<0.05), which was significantly reversed by DPCPX and ZM241385 (0.92 \pm 0.16 and 0.83 \pm 0.05 pERK/ERK1/2 respectively, p<0.05). Overall the beneficial cooperative effects of CPA were inhibited by DPCPX, ZM241385 and MRS1754. In conclusion, the data suggests that in wild-type mice both adenosine A_{2A} and A_{2B} receptor antagonists worsen functional recovery in the presence of adenosine A1 agonist. However, in the A2A KO mice, an adenosine A2B antagonist worsened functional recovery but as expected the adenosine A_{2A} antagonist did not. In the isolated perfused mouse heart, A1-mediated cardioprotection requires a cooperative activation of A₂ receptors, presumably via endogenous adenosine.

^{1.} Urmaliya et al, Cardiovasc Pharmacol 53(5):424-433 (2009)