PAR₂ regulation of PAR₄ trafficking

Margaret Cunningham^{1,2}, Kathryn McIntosh¹, Graeme Milligan³, Robin Plevin¹. ¹Strathclyde University, 161 Cathedral Street, G4 0RE, UK, ²Bristol University, Bristol, BS8 1TD, UK, ³Glasgow University, Glasgow, G12 8QQ, UK

Proteinase activated receptor-4 (PAR₄) is a class A, G-protein coupled receptor (GPCR), that is activated by means of proteolytic cleavage, by serine proteases such as thrombin and trypsin (Xu *et al*, 1998). Due to the irreversible nature of activation, newly synthesized pools of receptor are required to be mobilized to the cell surface in order for responsiveness to agonist to be retained (MacFarlane *et al*, 2001). However, unlike the other PAR family members, the mechanisms responsible for trafficking of PAR₄ remain unknown. We therefore investigated the mechanisms responsible for trafficking of PAR₄ to the plasma membrane.

Membrane expression of PAR_4 is relatively low in most cell types and therefore proves difficult to detect. This study therefore employed techniques to transiently transfect in fluorescent tagged PAR_4 constructs to study its trafficking in the keratinocyte cell line NCTC2544, Clone G cells (NCTC2544 stably expressing PAR_2) or HEK293s, which have endogenous levels of PAR_2 . PAR_4 trafficking and interaction with proteins was assessed using techniques including, Western blotting, co-immunoprecipitation, Fluorescence energy transfer (FRET), and inositol phosphate assays.

Initial experiments demonstrated that PAR₄ was poorly expressed at the plasma membrane and was mainly retained in the endoplasmic reticulum. Immuno-precipitation studies revealed that in PAR₂ deficient cells, PAR₄ interacted with the COPI protein subunit β -COP1, which functions to retain proteins within the ER. Sequence analysis of PAR₄, revealed an arginine-based (RXR) ER retention sequence located within extracellular loop 2, mutation of this sequence (R¹⁸³AR – A¹⁸³AA), resulted in enhanced membrane delivery of PAR₄. Further experiments revealed that co-expression of PAR₄ with either endogenous or transfected PAR₂ enhanced plasma membrane expression, and PAR₄ was demonstrated to interact with PAR₂ through immuno-precipitation and FRET (PAR_{2/4} = 1.883 ± 0.003), however no FRET signal was detected when the fluorescent tags from the constructs were expressed alone (CFP/YFP = 1.101 ± 0.008). Interaction of PAR₂ with PAR₄ facilitated the disruption of the β -COP1 – PAR₄ complex, allowing interaction instead with the chaperone protein 14-3-3-zeta, and the subsequent anterograde traffic of PAR₄ to the plasma membrane. This resulted in enhanced PAR₄ signalling, as measured through inositol phosphate accumulation.

This study identifies a novel regulatory role for PAR₂ in the anterograde traffic of PAR₄. PAR₂ was shown to both facilitate and abrogate protein interactions of PAR₄, impacting upon both receptor localization and cell signal transduction. These studies will contribute greatly to the understanding of PAR₄ receptor pharmacology in both physiological and patho-physiological states.

MacFarlane, SR et al. (2001) Pharmacol Rev 53:245-82

Xu, W et al. (1998) Proc Natl Acad Sci USA, 95:6642-6