Evaluating the Roles of Tyrosine 3.60 and the "DRY" Ionic Lock in $\beta 2$ Adrenoceptor Internalisation

CM Ashley, ND Holliday University of Nottingham, Nottingham, UK

Many studies support an "ionic lock" that stabilises the inactive conformation of class A GPCRs (Rovati *et al.*, 2007; Valentin-Hansen *et al.*, 2012). Thus in the β 2-adrenoceptor (β 2AR), Arg3.50 of the "DRY" motif, at the cytoplasmic end of transmembrane domain (TM) III, has been proposed to form a salt bridge with TM VI Glu 6.30 (Valentin-Hansen *et al.*, 2012). However these direct contacts between TM III and VI residues are not evident for most inactive GPCR crystal structures (Rasmussen *et al.*, 2007; Warne *et al.*, 2008). Instead adrenoceptor structures indicate another residue, Tyr3.60 in intracellular loop 2, might partner either Arg3.50 (β 1AR, Warne *et al.*, 2008) or Glu6.30 (β 2AR, Rasmussen *et al.*, 2007). Hence this study investigated effects of Tyr3.60, Arg3.50 and Glu6.30 mutants on agonist-stimulated β 2AR internalisation, as one indicator of receptor activation.

SNAP-tagged β 2AR cDNAs were constructed and stably expressed in HEK293 cells as described (2). Cells on 96 well plates were first labelled with SNAPsurface AF488 (0.1 μ M, NEB) to identify β 2AR initially at the cell surface (Valentin-Hansen *et al.*, 2012). Agonist treatments (45 min, 37°C) were in HBSS / 0.1% BSA and 5 μ g/ml AF633-transferrin (Tf, Invitrogen). Following fixation, images were acquired using an IX Micro platereader (Molecular Devices) and automated image analysis (MetaXpress 2.0) quantified the intensity of labelled β 2AR within Tf-identified internal compartments. Individual concentration response curves in triplicate were pooled to obtain pEC₅₀ and R_{max} values (Graphpad Prism).

β2AR wild type (wt) and mutants were predominantly cell surface expressed under basal conditions and underwent isoprenaline-stimulated internalisation (10 μM responses (n = 2-6): 1.64±0.10 fold over basal (wt), 1.39±0.05 (Y3.60A), 1.57±0.11 (E6.30A) and 1.38 (R3.50A)). Salbutamol and salmeterol were partial agonists in stimulating β2AR wt internalisation, relative to isoprenaline (Table 1). E6.30A substitution resulted in significantly increased potency and relative R_{max} for all three agonists, and a modest increase in pEC₅₀ values was also evident in the R3.50A mutant (Table 1). However compared to wt responses, isoprenaline and salbutamol were 3-7 less potent in stimulating β2AR Y3.60A endocytosis, while salmeterol was inactive (Table 1). Thus contrasting effects of Y3.60A and E6.30A in the internalisation assay support a role for Glu6.30 but not Tyr3.60 in constraining an inactive β2AR conformation. However Tyr3.60 may support active complexes (e.g. with arrestins) necessary for β2AR endocytosis.

Receptor	Isoprenaline		Salbutamol		Salmeterol	
	pEC ₅₀	R _{max} (%)	pEC ₅₀	R _{max} (%)	pEC ₅₀	$R_{max}(\%)$
WT	7.43±0.17	100	6.72±0.21	53.5±6.3	7.73±0.41	31.4±18.0
E6.30A	8.53±0.24* *	100	7.63±0.20*	88.7±13.4	8.90±0.18*	106±17*
R3.50A	8.10	100	7.17	87.6	8.28	41.8
Y3.60A	6.90±0.11	100	5.90±0.49	28.9±12.7	N.D.	-1.7±10.1

<u>Table 1</u> Summary of β 2AR internalisation responses

Pooled data (3-6 expts, except R3.50A, n=2). R_{max} is expressed as maximum response relative to 10 μ M Isoprenaline at the same receptor. N.D. not determined. **P*<0.05, ** *P*<0.01 compared to wt (Student's *t*-test).

We thank Louise Valentin-Hansen and Prof Thue Schwartz (University of Copenhagen) for provision of cDNAs. Clare Ashley was an undergraduate Wellcome Trust Vacation Scholar.

Rasmussen SG et al. (2007) Nature 450: 383 - 387.

Rovati GE et al. (2007) Mol. Pharmacol. 71: 959 - 964.

Valentin-Hansen L et al. (2012) J. Biol. Chem. 287: 31973 - 31982.

Warne T et al. (2008) Nature 454: 486 - 491..