The anti-inflammatory effects of melanocortin peptides in lipopolysaccharide activated chondrocytes

Vedia Can¹, Magdalena Kaneva², Mark Kerrigan³, Ian Locke¹, Stephen Getting¹. ¹University of Westminster, School of Life Sciences, W1W 6UW, London, UK, ²William Harvey Research Institute, Department of Biochemical Pharmacology, EC1M 6BQ, London, UK, ³University of Greenwich, School of Science, ME4 4TB, Chatham, UK

Introduction

Infectious (septic) arthritis occurs when bacteria such as *E.coli or other* microorganisms infect the joint leading to inflammation and release of pro-inflammatory cytokines. Harnessing the body's natural anti-inflammatory proteins to target this underlying inflammatory component may provide an effective treatment¹.

Melanocortin peptides display potent anti-inflammatory effects in models of experimental inflammation¹, with effects being mediated via activation of a family of G-protein coupled melanocortin receptors (MC). To date five have been identified, with MC₁ and MC₃ being the most promising candidates for modulation of the host inflammatory response. This study aims to determine whether melanocortin peptides inhibit pro-inflammatory cytokine release and induce anti-inflammatory pro-resolving proteins in a model of lipopolysaccharide (LPS) stimulated chondrocytes.

Methods

Human C20/A4 cell-line chondrocytes² were plated at $1x10^6$ cells/well in 24-well plates and stimulated with 0.1-3µg/ml of LPS (*E.coli;*111.60) for 6h, to determine the release of the proinflammatory cytokines interleukin (IL)-6 and IL-8. In separate experiments, chondrocytes were pre-treated with the pan-melanocortin agonist α -MSH (3µg/ml), the MC3 agonist D[Trp³]- γ -MSH³ (3 µg/ml) and c-terminal peptide of α -MSH KPV (4µg/ml) (all dissolved in PBS) for 30mins prior or 2h after LPS (0.1µg/ml) stimulation for 6 h. Following stimulation, cells were harvested to determine heme-oxygenase 1 (HO-1) expression by western blot. Cell-free supernatants were analysed for IL-6 and IL-8 release by ELISA. Data are expressed as Mean \pm SD of n=4 determination in triplicate. *P<0.05 vs. appropriate control.

Results

LPS (0.1µg/ml) caused a maximal release of IL-6 and IL-8 with 93.6 \pm 6.1 and 316.1 \pm 2.1pg/ml respectively (P<0.05 vs. control). Higher concentrations of LPS caused a reduction in release of these cytokines at this time-point. Pre-treatment of cells with $\alpha\text{-MSH}$ and D[Trp 8]- $\gamma\text{-MSH}$ caused a significant reduction in IL-6 and IL-8 release following LPS stimulation (0.1µg/ml) with $\alpha\text{-MSH}$ causing a 30% and 49% reduction in IL-6 and IL-8 with 65.6 \pm 6.9 and 160.3 \pm 19.2pg/ml respectively (P<0.05). Whilst the selective MC $_3$ agonist D[Trp 8]- γ -MSH caused a 60% and 29% reduction in IL-6 and IL-8 with 37.8 \pm 3.5 and 226.4 \pm 8.4pg/ml respectively (P<0.05 vs. control), the peptide KPV failed to inhibit either IL-6 or IL-8.

Pre-treatment of C-20/A4 chondrocytes with melanocortin peptides inhibited LPS induced cytokine release. Next, we investigated the effect of therapeutic peptide treatment on IL-8 release with the melanocortin peptides being administered 2h after LPS stimulation. α -MSH and D[Trp⁸]- γ -MSH causing a 23% and 30% reduction in IL-8 release down to 245.0 \pm 16.8 and 220.9 \pm 13.8pg/ml; P \leq 0.05, respectively.

LPS caused a 21% (0.79 fold) reduction in HO-1 protein expression compared to control, whilst pre-treatment of cells with α -MSH, D[Trp⁸]- γ -MSH and KPV caused a significant increase in HO-1 expression with a 1.22,1.59 and 1.2 fold increase respectively.

Conclusion

These results suggest a role for melanocortin peptides at inhibiting pro-inflammatory cytokine release whilst inducing pro-resolving anti-inflammatory proteins following LPS stimulation of human C-20/A4 chondrocytes. Overall suggesting a potential therapeutic application of these peptides in arthritic pathologies.

- [1] Getting SJ, Pharmacol Ther 111:1-15,2006
- [2] Kaneva M, et al., Br J. Pharmacol. 167(1):67-79,2012
- [3]Getting SJ, et al., FASEB J 20:2234-41,2006