Chromenopyrazole as Versatile Cannabinoid Scaffold: from \mbox{CB}_1 towards \mbox{CB}_2 Selectivity

Paula Morales¹, Maria Gómez-Cañas², Dow P. Hurst³, Moisés Garcia-Arencibia², Javier Fernández-Ruiz², Patricia Reggio³, Pilar Goya¹, Nadine Jagerovic¹. ¹Consejo Superior de Investigaciones Científicas, Instituto de Química Médica, Madrid, Spain, ²Facultad de Medicina, Universidad Complutense de Madrid, Departamento de Bioquímica y Biología Molecular. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Ins, Madrid, Spain, ³Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, USA

Background. A series of chromenopyrazoles has been described by us as non-psychoactive and selective CB_1 cannabinoid agonists with peripheral antinociceptive properties (Cumella J et al, ChemMedChem 7:452, 2012).

Purpose. In an attempt to target the CB₂ type receptor, we propose different structural modifications of the chromenopyrazole scaffold. Structural features required for CB_1/CB_2 affinity and selectivity are explored by molecular modelling. Affinity of new compounds is evaluated using competitive binding assays. Then, compounds with the highest CB₂ affinity profiles were tested in CB2-mediated functional assays using BV2 cultured cells (a mouse microglia cell line).

Methods.

Synthesis. The 7-alkyl-1,4-dihydro-4,4-dimethylchromenopyrazol-9-oles were synthesized from the corresponding resorcinol following the procedure described in Cumella J et al. The preparation of the 9-alkoxy-7-alkyl-1,4-dihydro-4,4-dimethylchromenopyrazoles was achieved by alkylation of the corresponding chromenopyrazol-9-oles.

Molecular modelling. Conformational analysis of selected new chromenopyrazoles was first performed to determine the global minimum-energy conformation. Then, they were docked by using models of active state CB_1 (CB_1R^*) and CB_2 (CB_2R^*) receptors (Pei Y et al, Chem Biol 15: 1207, 2008; Hurst DP et al, J Biol Chem 285:17954, 2010) that include extracellular and intracellular loops and N and C terminus.

Pharmacological evaluation. The affinity of the new compounds was evaluated measuring their ability to displace [³H]CP55940 from human cannabinoid CB₁ and CB₂ receptors transfected into HEK293 EBNA cells. The effects of the selected CB₂ chromenopyrazole ligands on lipopolysaccharide (LPS)-induced production of prostaglandin E₂ (PGE₂) were examined in BV2 microglia. The PGE₂ release was measured using an ELISA kit. This CB₂-mediated functional assay was performed on new compounds alone or in combination with WIN 55,212,2 or SR144528. (Oh YT et al, Neurosci Lett 474:148, 2010).

Results. A new library of chromenopyrazoles was synthesized, characterized, and tested at cannabinoid CB_1 and CB_2 receptors by radioligand binding and functional activity assays. Fine-tuning of affinity and selectivity was achieved by structural modifications performed on the scaffold (figure 1). The docking studies using the CB_1 and CB_2 receptors models (CB_1R^* and CB_2R^*) validate the structure activity relationships. The different ligand-receptor interactions provide detailed structural information.

Figure 1. Examples of chromenopyrazoles.

Conclusion. Chromenopyrazoles were found to constitute a versatile scaffold for obtaining potent cannabinoid receptor ligands with selectivity at either CB_1 or CB_2 receptor types.

Supported by grants MICINN SAF2012-40075, SAF2009-12422, and CAM S2011/BMD-2308.