The 11-hydroxy Metabolite Of Δ^9 -Tetrahydrocannabivarin Behaves As An Apparent CB₁ and CB₂ Receptor *Neutral* Antagonist

Maria Grazia Cascio, Pietro Marini, Daniele Bolognini, Roger G. Pertwee. University of Aberdeen, Aberdeen, UK

We have reported previously that the phytocannabinoid, Δ^9 -tetrahydrocannabivarin (Δ^9 -THCV), can behave as a CB₁ receptor antagonist (Pertwee et al., 2007), and as a CB₂ receptor partial agonist (Bolognini et al., 2010). We now report results from experiments directed at investigating the ability of the Δ^9 -THCV metabolite, 11-OH- Δ^9 -THCV, to target cannabinoid CB₁ and CB₂ receptors.

In our investigation, we performed both [3 H]CP55940 displacement binding assays with membranes obtained from MF1 mouse whole brain, hCB₁ and hCB₂ CHO cells, and [35 S]GTP γ S binding assays, performed with these membranes or with MF1 mouse spleen membranes, using methods we have described previously (Cascio et al., 2010; Bolognini et al., 2010). Mean apparent K_B values for 11-OH- Δ^{9} -THCV (1 μ M) were calculated by Schild analysis.

Table: K _i	(nM),	maximum	displacement	(%),	E _{max}	(%)	and	K_B	(nM)	values,	with	95%
confidence	limits	(CL), for 1	l1-OH-Δ ⁹ -TH	CV de	etermi	ned	using	mou	ise br	ain, mo	use sp	leen,
human CB ₁	CHO	cell or hum	an CB ₂ CHO	cell m	embra	anes						

Tissue	K _i (nM)	Displ. (%)	n	E _{max} (%)	n	K _B (nM)	n
	95% CL	95% CL		95% CL		95% CL	
Brain	22.4	89.7	6	-	6	127.8	8
	12.9 & 39.0	84.3 & 95.2				44.0 & 370.7	
hCB1	27.6	94.7	6	-36.2	8	ND	
	13.6 & 55.9	86.2 & 103.2		-43.9 & - 28.5			
hCB ₂	119.1	93.6	6	-	8	89.4	8
	92.4 & 153.5	89.5 & 97.7				18.6 & 430.4	
Splee n	-	-		-		304.0	5-7
						42.1 & 2197	

When tested alone, 11-OH- Δ^9 -THCV (1nM-10µM) did not affect [³⁵S]GTPγS binding to either mouse brain or hCB₂ CHO cell membranes. Also, at 1 µM, 11-OH- Δ^9 -THCV induced a rightward, but not a downward, shift of the log concentration-response curve of CP55940 in mouse brain membranes, hCB₂ CHO cell and mouse spleen membranes, thus behaving as an

apparent CB₁ and CB₂ "neutral" antagonist. K_B values are reported in the Table above. Consequently, 11-OH- Δ^9 -THCV may be an important lead compound for a much needed *neutral* CB₂ receptor antagonist. It will be important, therefore, to establish whether, like Δ^9 -THCV (Bolognini et al., 2010), 11-OH- Δ^9 -THCV behaves as a CB₂ partial agonist when the measured response is CB₂-mediated inhibition of cyclic AMP production.

Funded by GW Pharmaceuticals

Pertwee RG et al, Br J Pharmacol 150:586, 2007

Bolognini D et al, Br J Pharmacol 160:677, 2010

Cascio MG et al, Br J Pharmacol 159:129, 2010