Effect of synthetic cannabinoids added to smoked herbal mixtures on GABAergic and glutamatergic synaptic transmission in mouse brain slices

Bela Szabo, Eszter Boros, Mario Lederer. Department of Pharmacology; Albert-Ludwigs-Universität, Freiburg i. Brsg., Germany

Introduction. The CB₁ cannabinoid receptor is typically located on axon terminals, and its activation leads to presynaptic inhibition of synaptic transmission. The best known agonist of the CB₁ receptor is the phytocannabinoid Δ^9 -tetrahydrocannabinol. Recently, synthetic cannabinoids were introduced to the drug market: herbal mixtures for smoking ("Spice", "Lava Red", "Jamaican Gold"...) are "enriched" with such synthetic cannabinoids. Our aim was to characterize the synaptic effects of two frequently abused synthetic aminoalkylindoles, JWH-018 ((1-pentyl-1H-indol-3-yl)-1-naphthalenyl-methanone) and JWH-210 ((4-ethyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone). The effects of WIN-55212-1 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone) were also studied for comparison.

Methods. 250 µm-thick sagittal slices were prepared from the cerebella of young (8-18 days old) NMRI mice and superfused at room temperature. Purkinje cells in the cerebellar cortex were patch-clamped and spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) and evoked glutamatergic excitatory postsynaptic currents (eEPSCs) were recorded.

Results. JWH-210 (10⁻⁶ M) lowered the frequency of sIPSCs (by 28 ± 4 %; P < 0.05), but did not change their amplitude. JWH-210 (5 x 10⁻⁶ M) suppressed the frequency of sIPSCs more strongly (by 52 ± 9 %; P < 0.05); again, the amplitude was not changed. The CB₁ antagonist taranabant (10⁻⁶ M) abolished the effect of JWH-210 (10⁻⁶ M) on the frequency of sIPSCs. Depolarization of the postsynaptic Purkinje cells induced an endocannabinoid- and CB₁ receptor-mediated suppression of the GABAergic inhibitory input to the Purkinje cells (i.e., DSI occurred). DSI was occluded by superfusion of JWH-210 (5 x 10⁻⁶ M). JWH-210 (5 x 10⁻⁶ M) suppressed the frequency (by 48 ± 12 %; P < 0.05) but not the amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin (3 x 10⁻⁷ M), pointing to presynaptic inhibition of synaptic transmission. JWH-210 (5 x 10⁻⁶ M) decreased the amplitude of glutamatergic eEPSCs (by 67 ± 6 %; P < 0.05). This was due to presynaptic inhibition, because JWH-210 increased the ratio of the GABAergic sIPSCs. JWH-018 (5 x 10⁻⁶ M) lowered the frequency of sIPSCs (by 43 ± 8 %; P < 0.05) without changing their amplitude. WIN-55212-1 (5 x 10⁻⁶ M) had a very similar depressive effect on the sIPSCs.

Conclusions. The aminoalkylindoles JWH-210, JWH-018 and WIN-55212-1 inhibit GABAergic synaptic transmission with a presynaptic action. Due to this inhibition they interfere with endocannabinoid-mediated synaptic plasticity. JWH-210 also presynaptically inhibits glutamatergic synaptic transmission. In humans, as additives in herbal mixtures, the synthetic cannabinoids will probably also inhibit GABAergic and glutamatergic synaptic transmission and occlude endocannabinoid-mediated synaptic plasticity. Consequently, impairments of many neuronal functions, including cognitive functions, are to be expected.