Slow Releasing H₂S Donor-Thioglycine Exerts Cardioprotective Effects in Myocardial Ischemia/ Reperfusion in Vivo

Ciro Coletta¹, Sofia-Iris Bibli², Zongmin Zhou³, Athanasia Chatzianastasiou⁴, Athanassios Giannis⁵, Efstathios K. Iliodromitis⁶, Ioanna Andreadou², Csaba Szabo¹, Andreas Papapetropoulos³. ¹University of Texas Medical Branch, Department of Anesthesiology, Galveston, Texas, USA, ²University of Athens, Department of Pharmacy, Athens, Greece, ³University of Patras, Department of Pharmacy, Laboratory of Molecular Pharmacology, Patras, Greece, ⁴University of Athens, School of Medicine, Department of Critical Care and Pulmonary Services, Athens, Greece, ⁵Institut for Organische Chemie, Universität Leipzig, Leipzig, Germany, ⁶University of Athens, Medical School, Second University Department of Cardiology, Athens, Greece

Background: H_2S is produced continuously at low levels in biological systems playing an important role in the regulation of cardiovascular function¹. The diffusion ability of this gaseous molecule turns it into an attractive pharmacological agent for cardioprotection. Exogenous administration of rapid releasing H₂S donors affords cardioprotection during ischemia/ reperfusion injury². **Purpose:** Pharmacological characterization of newly synthetized thioaminoacids (thioglycine, L-thiovaline and L-thiolysine) as slow releasing H_2S donors. Further investigation of the cardioprotective role of thioglycine administrated in a rabbit model of ischemia/reperfusion injury and study of the underlying molecular mechanism(s) involved. Methods: H₂S release was determined through methylene blue method and a fluorescence- based assay³. Changes in cGMP levels in smooth muscle cells were measured by EIA in the absence of a phosphodiesterase inhibitor. In vivo infarct size was determined in 4 groups of anesthetized rabbits subjected to 30 minutes ischemia and 3 hours reperfusion: 1) Control group, no further intervention, 2) Thioglycine group, thioglycine was administrated at a dose of 16.26 µg*kg⁻¹ bolus on the 20th min of ischemia followed by infusion of 0.16226 mg*kg⁻¹ *h⁻¹ for the next 120 min, 3) *NaHS* group, NaHS was administrated at a dose of 100 µg*kg⁻¹ bolus on the 20th min of ischemia followed by infusion of 1 mg*kg⁻¹ *h⁻¹ for the next 120 min and 4) PostC group, animals were subjected to 8 cycles of 30sec ischemia/30sec reperfusion immediately after sustained ischemia. Drugs were administrated in saline. Dose of thioglycine was estimated as 1/10 equimolar of cardioprotective dose of NaHS⁴. The ratio of the infarct size (I) and the corresponding area at risk (R) was expressed as % I/R. Additional rabbits were subjected to the previous interventions up to 10th min of reperfusion for Akt, eNOS and GSK3ß assessment. Results: Thioglycine released more H_2S than L-thiolysine and L-thiovaline reaching a plateau after 60 min, in contrast to the rapid rate observed with NaHS. Exposure of cultured rat aortic smooth muscle to thioaminoacids led to a concentration-dependent increase in cGMP levels. Exposure to L-thiolysine and thioglycine had a much more robust effect on cGMP levels than NaHS. Glycine, valine and lysine failed to increase cGMP levels. In the *in vivo* model of ischemia/reperfusion the following results were obtained:

|--|

	Risk (±1SEM) %	Akt		eNOS	GSK3β
Control	45,30 ± 2,3	-		-	-
Thioglycine	17,70 ± 2,0 *	+ *	:	_	-
NaHS	12,30 ± 3,3 *	+ *	:	-	-
PostC	26,00 ± 2,3 *	+ *	:	+ *	+ *
	*p<0,05 vs Control group			*p<0,05 vs all other groups	

Conclusion: Thioaminoacids liberate H_2S at a slow rate versus inorganic salts and enhanced cGMP formation. Thioglycine triggered pharmacological postconditioning in rabbits during myocardial ischemia/reperfusion. The cytoprotective mechanism may involve activation of Akt and occurs independently of GSK3 β and eNOS.

References: (1) Wang R, *Physiol Rev* 92: 791, 2012 (2) Lefer DJ et al, *Clin Sci* 120:219, 2011 (3) Zhou Z et al, *Bioorg Med Chem* 20:2675, 2012 (4) Bibli et al, ESC 2013, Amsterdam

C.C. was funded by a Postdoctoral Fellowship of the AHA (12POST12060643). This work has been co-financed by the EU (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the (NSRF) - Research Funding Program: Thalis (MIS380259).