Agonist Activity Of VEGF₁₆₅b In HEK 293 Cells Expressing The Human VEGF Receptor 2

AJ Wheal, JJ Carter, SJ Hill, J Woolard. University of Nottingham, Nottingham, UK

Vascular endothelial growth factor (VEGF) is an agonist at VEGF receptor 2 (VEGFR2) associated with angiogenesis (1). VEGF₁₆₅b is a splice variant of this protein that has often been described as an inhibitory isoform or weak partial agonist with anti-angiogenic activity (1,2). Here we have compared the agonist activity of VEGF₁₆₅a and VEGF₁₆₅b in HEK 293 cells expressing human VEGFR2.

HEK 293 cells expressing VEGFR2 (wild type or containing an N-terminal NanoLuc[®] tag; Promega) and an NFAT (nuclear factor of activated T-cells) luciferase reporter gene, were cultured in Dulbecco's modified Eagle's medium (DMEM) plus 10% foetal calf serum. VEGFR2-NanoLuc[®] cells were grown on poly-d-lysinecoated 96-well white, clear-bottomed Greiner plates at a density of 25000 cells per well for 24h, then serum starved overnight before experimentation. VEGFR2 cells were grown to confluence in flasks before being seeded in a DMEM+0.1% BSA suspension of 40000 cells per poly-d-lysine-coated well. All cells were then preincubated with DMEM+0.1% BSA \pm cediranib (a tyrosine kinase inhibitor, final assay concentrations: 1×10^{-11} M to 1×10^{-7} M) before a further 5h incubation with VEGF₁₆₅a or VEGF₁₆₅b (final assay concentrations: 1x10⁻¹²M to 3x10⁻⁸M). For VEGFR2 cells, luciferase activity was measured using the One-GloTM Luciferase Assay System (Promega) according to manufactures instructions. In the case of VEGFR2-NanoLuc[®] cells, medium was aspirated from the cells prior to addition of 50µl DMEM plus 50µl ONE-GloTM reagent. Luminescence was measured on a TopCount NXT plate reader.

In both cell lines, VEGF₁₆₅a and VEGF₁₆₅b produced a concentration-dependent increase in luminescence, with VEGF₁₆₅b producing a lower maximal response compared to that obtained with VEGF₁₆₅a (Table 1). Cediranib inhibited the response to 3nM VEGF₁₆₅b in a concentration-dependent manor (Table 1). The *p*IC₅₀ values obtained for cediranib were similar to those obtained with 1nM VEGF₁₆₅a in VEGFR2-NanoLuc[®] (9.33 \pm 0.19, n=6) and VEGFR2 (3) cells (9.13 \pm 0.01, n=5).

Cells	VEGF ₁₆₅ a (<i>p</i> EC ₅₀)	VEGF ₁₆₅ b (<i>p</i> EC ₅₀)	VEGF ₁₆₅ b Maximal response (% of response to 30nM VEGF ₁₆₅ a)	Cediranib (pIC_{50}) (3nM) VEGF ₁₆₅ b as agonist)		
VEGFR2- NanoLuc [®] (n=6)	$\begin{array}{c} 9.87 \\ 0.09 \end{array} \hspace{1.5cm} \pm \end{array}$	9.25 ± 0.06	63.2± 4.8 %	9.32 ± 0.11		
VEGFR2	9.76 ±	9.21 ±	62.1 ± 1.2 %	9.38 ± 0.07		

(n=5)	0.08	0.08	

Table 1. Concentration-response parameters for VEGF₁₆₅a and VEGF₁₆₅b.

These data show that VEGF₁₆₅b is a partial agonist at VEGFR2 in HEK 293 cells expressing an NFAT reporter gene. These data, taken together with previously published work (1,2), raise the possibility that the effect of VEGF₁₆₅b on signalling may vary between cell types and with expression level of VEGFR2.

- 1. Woolard J et al. (2004). Cancer Res. 64: 7822-7835.
- 2. Suarez SC et al. (2006). Cell Mol Life Sci. 63: 2067-77.
- 3. Carter JJ et al. (2014). This meeting.