Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol13Issue3abst103P.pdf

Bimatoprost is a mixed inhibitor of the aldo-keto reductase 1C3 (AKR1C3) enzyme: A potential treatment target for sex hormone-dependent diseases

The aldo-keto reductase 1C3 (AKR1C3) enzyme belongs to the aldo-keto reductase superfamily. It has $(\beta/\alpha)_8$ structure motif and uses β -Nicotinamide adenine dinucleotide (2'-phosphate), reduced NADH/NADPH as cofactors. The enzyme is involved in the reduction of prostaglandin D₂ (PGD₂), prostaglandin H₂ (PGH₂), oestrone (E1) and progesterone to 9α ,11 β -prostaglandin F₂ (9α ,11 β -PGF₂), prostaglandin F₂ ($PGF_{2\alpha}$), 17 β -oestradiol(E2) and 20 α -hydroxyprogesterone, respectively¹. Sex hormone dependent diseases, i.e. endometriosis, endometrial cancer, breast cancer and prostate cancer have upregulated AKR1C3 expression, indicating a role in the pathogenesis of these diseases¹. Bimatoprost, or 17-phenyl trinor prostaglandin F₂ α ethyl amide, is a prostaglandin F receptor analogue. It was also found to inhibit the PGD₂ 11-ketoreductase and PGH₂9,11-endoperoxide reductase activities of AKR1C3². The aim of the project was to investigate whether bimatoprost can also inhibit the catalysis of E1 to E2.

The standard assay mixture contained 0.1M potassium phosphate buffer (KPB, pH=6.5), 0.5mM NADP⁺, 5mM glucose-6-phospate and 1 unit of glucose-6-phosphate dehydrogenase².1 μ I = 1 μ Ci of [³H]-oestrone with specific activity of 94Ci/mmol and 1 μ I of unlabelled oestrone at different concentrations (2.5, 5, 10, 20, 40 and 80 μ M) were added, in the presence or absence of bimatoprost. The reaction started by the addition of 3 μ g of recombinant AKR1C3 in a total volume of 50 μ I for 60 minutes at 37°C which was found to be linear at this time point. The reaction was terminated by 250 μ I of cold ethyl acetate: 100 μ I were blotted on a thin layer chromatography plate and developed for 30 minutes in ethyl acetate:chloroform (1:4). The bands were visualised by spraying the plate with methanol:sulphuric acid (1:1) and heated at 110°C for 10min³. The bands for E1 and E2 were scraped off and radioactivity was measured with Packard Tricarb 2100TR scintillation counter.

(a) The lineweaver-burk plot of mean reciprocal AKR1C3 velocity (1/V) values (±SD) of 3 experimental repeats showed that bimatoprost is a mixed inhibitor when plotted against reciprocal of oestrone conc. (1/[E1]); (b) a replot of slope vs bimatoprost concentration [μ M] was used to estimate Ki value (3.4 μ M); (c) a replot of 1/Vmax vs bimatoprost concentration [μ M] was used to estimate α Ki value (1 μ M). α value is 0.3, indicating that bimatoprost favours uncompetitive inhibition over competitive inhibition.

- 1. Byrns et al. (2011). J Steroid Biochem Mol Biol 125: 95-104
- 2. Koda et al. (2004). Arch Biochem Biophys 424: 128-136
- 3. Penning et al. (2000). Biochem. J. 351: 67-77