Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol13Issue3abst292P.pdf

A Bioequivalence Study for Hercules, a Biosimilar Trastuzumab Candidate in Development

Introduction: Trastuzumab, marketed as Herceptin[®], is a humanized monoclonal antibody which binds HER2-oncoprotein and is effective against breast cancer over expressing HER2. We here report the results of a Phase 1 study designed to investigate bioequivalence between Hercules and Herceptin[®]. The assessment of bio similarity included not only pharmacokinetic (PK) but also pharmacodynamic (PD) equivalence.

Subjects and Methods: A single centre, single dose, randomized, double-blind, crossover study was conducted in 22 healthy males; 19 completed both 3-month periods separated by 2-8 week wash-out. On each period the volunteers received an 8mg/kg trastuzumab intravenous infusion over 90 minutes (Hercules or Herceptin[®]). The main objective was PK bioequivalence (serum ELISA assay using anti-idiotypic antibody). For PD comparaison, *ex-vivo* serum antiproliferative activity on a breast cancer cell line (SKBR3) over expressing HER2 was assessed, as well as numerous *ex-vivo* and *in-vitro* immunomodulation markers. ANOVA was applied to PK and PD results. Safety included local and systemic tolerance, laboratory tests, echocardiography and immunogenicity.

Results: Time concentration curves and PK parameters were very close:

Parameter	Units	Hercules GeoMean (GeoCV%)	Herceptin [®] GeoMean (GeoCV%)	Point Estimate (90% CI)
C _{max} normalized ^a	µg/mL	165 (15.7)	178 (15.6)	0.922
$AUC_{0-\infty}$ normalized ^a	µg.h/mL	45486 (22.7)	48350 (28.5)	(0.877) 0.937 (0.887; 0.989)
T _{max} (median [range])	h	1.5 (1.4-9.0)	1.5 (1.3-9.0)	-
T _{1/2} (day)	Day	6.94 (22.6)	7.02 (26.3)	0.988
				(0.943; 1.035)
CL	L/day	0.296 (22.7)	0.278 (28.5)	1.068 (1.011 [,] 1.127)

^a Normalized to 8.0 mg/kg dose; ^b Clearance normalized to 70 kg body weight; GeoCV% = Geometric Coefficient of Variation

Antiproliferative activity time curves were super imposable between both drugs, and concentration-effect relationships were similar (with 95%Cl of \pm 4%). Immunomodulation markers were essentially comparable. Satisfactory and similar safety profiles were observed without elicitation of immunogenicity or changes in cardiac left ventricular ejection fraction.

Conclusion: These results confirm pharmacokinetic bioequivalence for Hercules vs. Herceptin[®], but also demonstrate comparable antiproliferative activity, immunomodulation and safety profiles in healthy volunteers, providing strong support for bio similarity.