Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol14lssue1abst049P.pdf

Investigating pharmacological interactions between mGlu₁ and mGlu₅ using a constitutive heterodimer construct

Following the discovery that metabotropic glutamate receptor 5 (mGlu₅) exists as a covalently bonded homodimer(1), in house data lead us to believe that mGlu₅ may form a heterodimer with mGlu₁. Using mGlu₁ and mGlu₅ constructs with C terminals modified with GABA_B tails, we hoped to understand whether these receptors would interact pharmacologically as a dimer.

The pharmacological properties of mGlu5 specific positive allosteric modulators, LSN-2814617 and CDPPB, were determined for mGlu₁, mGlu₅, mGlu₅ constitutive homodimer (mGlu_{5.5}), and mGlu_{1/5} constitutive heterodimer (mGlu_{1.5}) cell lines using a Fluorometric Imaging Plate Reader (FLIPR). Briefly, stable cell lines expressing the above constructs were plated onto poly-D-lysine coated 96 well plates at 50,000 cells/well and incubated for 24 hours at 37 °C with 95 % air and 5 % CO₂. The cells were then incubated in HBSS supplemented with 10 mM HEPES and 10 μ M Fluo-4 AM and incubated for 1 hour at room temperature in the dark. A range of concentrations of group I selective agonist (S)-3,5-DHPG (150 nM to 30 μ M) were assayed in combination with a range of concentrations of either LSN-2814617 (10 nM to 10 μ M) or CDPPB (3 nM to 3 μ M). Intracellular calcium levels were monitored before and after the addition of compounds, with data collection ranging from 1 image every second to 1 image every 3 seconds. Further assays were performed as above using an EC₉₀ concentration of (S)-3,5-DHPG (10 μ M) to assess a range of concentrations of the highly selective mGlu5 negative allosteric modulator MPEP (3 pM to 10 μ M). Data was analysed using the operational ternary complex model with Graphpad Prism v6.0.

Our data showed that the mGlu₅ and mGlu_{5.5} constructs had insignificant differences in their pharmacological properties with respect to LSN-2814617 ($\alpha\beta$ = 3.95 ± 0.32 for mGlu₅, 3.99 ± 0.39 for mGlu_{5.5}; p > 0.05 two-tailed Student's t-test), however, mGlu_{1.5} was significantly different to the wild-type ($\alpha\beta$ = 1.68 ± 0.37; p = 0.009 two-tailed Student's t-test versus mGlu₅). The properties of CDPPB were not significantly different between mGlu₅ and mGlu_{5.5} ($\alpha\beta$ = 8.84 ± 0.38 for mGlu₅, 13.9 ± 1.13 for mGlu_{5.5}; p > 0.05 two-tailed Student's t-test), but again mGlu_{1.5} was significantly different to the wild-type ($\alpha\beta$ = 3.45 ± 1.26; p = 0.005 two-tailed Student's t-test). Similarly, there was no significant difference in the ability of MPEP to inhibit at (S)-3,5-DHPG response at the mGlu₅ and mGlu_{5.5} constructs (EC₅₀ = 8.89 ± 0.05 for mGlu₅, 8.59 ± 0.02 for mGlu_{5.5}; p > 0.05 two-tailed Student's t-test). There was a significant difference in the ability of MPEP to inhibit an (S)-3,5-DHPG response at the mGlu_{1.5} compared to the wild-type and mGlu_{5.5} (EC₅₀ = 7.86 ± 0.09; p = <0.005). MPEP only inhibited 50% of the (S)-3,5-DHPG response in the mGlu_{1.5} assays, but acted as a full inhibitor at the wild-type and mGlu_{5.5} homodimer.

Our experiments have shown that there are significant differences between the pharmacological profile of allosteric modulators acting at the mGlu₅ homodimer compared to a mGlu_{1.5} heterodimer. The mGlu₁ part of the heterodimer appears to reduce the activity of allosteric modulators at the mGlu₅ receptor. This is unlikely to be due to the modification of the C-terminal tail, as this effect was not present in the mGlu_{5.5} homodimer construct. Further experiments, including assessing the binding properties of these constructs could elucidate whether these effects are by binding-site inhibition or functional inhibition, and whether the dimer exists *in vivo*.

(1) Romano et al (1998). *J Biol Chem* **271(45)**: 28612–28616.