Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol16Issue1abst056P.pdf

An investigation of the pharmacology of vortioxetine at human 5-HT₃ receptors

A. Roberts¹, G. Grafton¹, S. Larkin¹, S. Butterworth¹, R. Myerson², A. J. Cooper¹, N. M. Barnes¹. ¹College of Medical and Dental Sciences, University of Birmingham, Birmingham, UNITED KINGDOM, ²School of Chemistry, University of Birmingham, Birmingham, UNITED KINGDOM.

Introduction: Vortioxetine is a novel antidepressant that was approved by the FDA in September 2013 for use in Major Depressive Disorder (MDD). Some of the most common side-effects are emesis and diarrhoea, which may indicate activation of 5-HT₃ receptors at therapeutic concentrations. Indeed, vortioxetine displays affinity for a number of 5-HT receptors including the 5-HT_{1B}, 5-HT₃, and 5-HT₇ receptors, and a previous study demonstrated activation of the 5-HT₃ receptor but only upon first application of the drug¹. The 5-HT₃ receptor is a ligand-gated ion channel expressed by neurones in the brain (e.g. chemoreceptor trigger zone) as well as in the periphery (e.g. gastrointestinal tract). Two major subtypes of the receptor have been studied in the most detail; the homomeric 5-HT₃AB receptor. The aim of this study was to further explore the interaction of vortioxetine with the 5-HT₃ receptor.

Methods: Using HEK293 cell lines stably expressing either the 5-HT₃A or 5-HT₃AB receptor, the agonist profile of vortioxetine was investigated using fluorescent intracellular calcium assays, as previously described². Furthermore, the interaction of vortioxetine with the orthosteric site of the 5-HT₃ receptor was examined using receptor binding techniques².

Results: In functional assays, vortioxetine behaved as a partial agonist with intrinsic efficacy of 42±3 % at 5-HT₃A receptors and 37±4 % at the 5-HT₃AB receptors (mean±SEM, n=4). 5-Chloroindole (5-Cl; 10 μ M), a 5-HT₃ receptor positive allosteric modulator, increased the efficacy of vortioxetine at both the 5-HT₃A receptor (to 80±6 % relative to 5-HT) and 5-HT₃AB receptor (77±10 % relative to 5-HT)² (mean±SEM, n=4). The EC₅₀ of vortioxetine was similar at 5-HT₃A and 5-HT₃AB receptors (179±14 nM and 119±9 nM, respectively). Receptor binding experiments demonstrated the affinity of vortioxetine was comparable between 5-HT₃A and 5-HT₃AB receptors (9±1.4 and 19±2 nM, respectively; mean±SEM, n=3-4). In saturation binding experiments, vortioxetine (10-30 nM) increased the K_d of [³H]-granisetron, but had no effect on the density of labelled receptors indicative of a competitive interaction (n=4).

Conclusion: Our studies indicate vortioxetine is a relatively high affinity competitive partial agonist at the 5-HT₃ receptor. Such actions may be responsible for the emesis and/or diarrhoea experienced by some patients receiving vortioxetine.

References:

- 1. Bang-Anderson et al. (2011). J. Med. Chem 54: 3206–3221.
- 2. Newman et al. (2013). Br J Pharmacol 169: 1228–1238.