Discovery of a novel, high affinity, small molecule alpha-v beta-6 integrin inhibitor for the treatment of idiopathic pulmonary fibrosis

R. J. Slack¹, A. E. John², E. J. Forty³, P. F. Mercer³, T. K. Pun¹, E. Gower¹, D. J. Flint⁴, S. Pyne⁴, J. C. Denyer¹, A. J. Fisher⁵, R. C. Chambers³, G. R. Jenkins², S. J. Macdonald¹. ¹Fibrosis and Lung Injury DPU, Respiratory TAU, GlaxoSmithKline, Stevenage, UNITED KINGDOM, ²Nottingham Respiratory Research Unit, University of Nottingham, Nottingham, UNITED KINGDOM, ³Centre for Inflammation and Tissue Repair, University College London, London, UNITED KINGDOM, ⁴Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UNITED KINGDOM, ⁵Tissue Fibrosis and Repair Group, Newcastle University, Newcastle upon Tyne, UNITED KINGDOM.

Introduction: Fibrosis is the formation of scar tissue due to injury or long-term inflammation and is a leading cause of morbidity and mortality in disorders that include idiopathic pulmonary fibrosis (IPF). The alpha-v beta-6 ($\alpha\nu\beta6$) integrin has been identified as playing a key role in the activation of transforming growth factor- β (TGF β) that is hypothesised to be pivotal in the development of IPF [1]. Therefore, a drug discovery programme within GlaxoSmithKline to identify small molecule $\alpha\nu\beta6$ selective RGD-mimetics was initiated.

Method: As part of a medicinal chemistry programme GSK3008348 [2] was identified and profiled in a range of pre-clinical *in vitro* (radioligand binding [3], flow cytometry [4], functional TGF β [5] and high content screening assays) and *in vivo* (bleomycin-induced lung injury mouse model (20 and 60 IU bleomycin treated male C57/BI6 mice)) systems.

Results: GSK3008348 (1% DMSO) was shown to bind to the $\alpha\nu\beta6$ with high affinity (pK_D 11.3±0.07, mean±SEM, n=6 donors) in membrane preparations generated from IPF human lung tissue. In primary human lung epithelial cells GSK3008348 (0.1% DMSO) induced rapid internalisation of $\alpha\nu\beta6$ ($t_{1/2}$ 2.6±0.5 min, mean±SEM, n=4) followed by a slow return of the integrin to the cell surface ($t_{1/2}$ 11.0±1.9 h, mean±SEM, n=4). It was shown that $\alpha\nu\beta6$ is degraded in lysosomes post-internalisation by GSK3008348 that would suggest the slow return of integrin to the surface and sustained duration of action is a consequence of new $\alpha\nu\beta6$ synthesis. GSK3008348 (1 mg/kg i.n. saline) was shown to engage with $\alpha\nu\beta6$ and inhibit the activation of TGF β with a prolonged duration of action using *in vivo* mouse bleomycin lung fibrosis models measuring $\alpha\nu\beta6$ engagement (SPECT imaging [6]) and TGF β signalling (pSMAD2 lung levels).

Conclusion: In summary, GSK3008348 displays the desirable pharmacological characteristics required for targeting a prolonged inhibition of TGF β activation in the IPF lung via blockade of the $\alpha\nu\beta6$ integrin and is currently in Phase I trials for IPF [7].

References:

- 1. Goodwin A and Jenkins G (2009). Biochem Soc Trans 37: 849-854.
- 2. Anderson NA et al., (2016). Org Biomol Chem 14: 5992-6009.
- 3. Hall ER et al., (2016). Biochem Pharm (in press) doi:10.1016/j.bcp.2016.08.003.
- 4. Slack RJ et al., (2016). Pharmacology 97:114-125.
- 5. Xu MY et al., (2009) Am J Pathol 174: 1264-1279.
- 6. John AE et al., (2013) J Nucl Med 54:1-7.

7. NCT02612051 - First Time in Human (FTIH) Study of GSK3008348 in Healthy Volunteers and Idiopathic Pulmonary Fibrosis Patients https://clinicaltrials.gov/