Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol16lssue1abst065P.pdf

Carbon monoxide regulates intracellular calcium in human bronchial epithelial cells

R. Zhang, C. Yip, W. KO. School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, HONG KONG.

Introduction: Carbon monoxide (CO) is an important autocrine/paracrine messenger that is involved in various physiological and pathological processes. CO can be endogenously produced by haem oxygenase (HO) enzymes (HO-1, HO-2 and HO-3). Evidence has recently been obtained that CO may affect calcium homeostasis in pancreatic acinar cells¹. This project aimed to investigate the regulatory role of CO in a P2Y receptor–mediated calcium signalling pathway in a human bronchial epithelial cell line, 16HBE14o-.

Method: To measure intracellular calcium concentration ($[Ca^{2+}]_i$), 16HBE14o- cells grown on glass coverslips were loaded with Fura-2-AM (3 µM, 45 min, 37°C) in standard Krebs–Henseleit solution. $[Ca^{2+}]_i$ was monitored via the Fura-2 fluorescence ratio (excitation 340/380 nm; emission > 510 nm). Agonist-induced D-myo-inositol-1-phosphate (IP₁) (a surrogate of 1,4,5-trisphosphate, IP₃) in LiCl-treated cells was quantified using the Cisbio IP-One kit (Cisbio Bioassays, Codolet, France). cGMP-dependent protein kinase (PKG) activity was measured with a Cyclex® assay kit (MBL International, MA, USA). The data are given as the mean ± SEM.

Results: CO-releasing molecule 2 (CORM-2) induced both calcium increase and IP₁ production in a concentration-dependent manner. This effect was suppressed by a PLC inhibitor, U73122 (10 μ M). In contrast, CORM-2 exerted an inhibitory effect on UTP-induced calcium release and influx. CORM-2 did not affect the store-operated Ca²⁺ entry induced by thapsigargin. In the presence of 30 μ M CORM-2, the UTP-induced calcium increase was reduced to 34.5% ± 0.7% (*n* = 5) of the control, but the percentage increased back to 70.6% ± 6.4% (*n* = 4) and 77.5% ± 7.7% (*n* = 3) of the control in the presence of a soluble guanylyl cyclase (sGC) inhibitor, ODQ (10 μ M), or a PKG inhibitor, KT5823 (5 μ M), respectively. Treating the cells with CORM-2 (30 μ M) led to an increase in PKG activity (1.47 ± 0.08 - fold vs. control, *n* = 3), which could be blocked by KT5823 (1.13 ± 0.04 - fold vs. control, *n* = 3).

Conclusion: CORM-2 had dual effects on $[Ca^{2+}]_i$ modulation in 16HBE14o- cells. At higher concentrations, CORM-2 stimulated PLC/IP₃/calcium signalling pathways, whilst at lower concentrations, CORM-2 inhibited the calcium signalling evoked by P2Y receptor agonist in a sGC/PKG-dependent manner. Thus, CO may act as a regulator of calcium homeostasis in human airway epithelia.

References:

1. Moustafa A et al. (2014). Am J Physiol Cell Physiol 307(11): C1039-C1049.

Supported by a RGC GRF grant (#466913).