Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol16lssue1abst109P.pdf

Inhibition of the firing activity of locus coeruleus neurons by EP₃ receptors in rat brain slices

A. Nazabal, A. Mendiguren, J. Pineda. Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, SPAIN.

Introduction: Prostaglandin E_2 (PGE₂) is involved in inflammation and other physiological functions. PGE₂ receptors (EP) are members of the G protein-coupled receptor family and comprise four subtypes: EP₂ and EP₄ (coupled to G_s proteins), EP₁ (coupled to G_q proteins) and EP₃ (coupled to G_{i/o} proteins). The synthetic enzyme for PGE₂ COX-2 has been described to be constitutively present in the brain¹. However, the function of prostanoid system in the brain is not yet well understood. The locus coeruleus (LC), the main noradrenergic nucleus of the brain, has high expression of the EP₃ receptor². Thus, our aim was to characterise pharmacologically the EP₃ receptors in LC neurons by electrophysiological recordings in rat brain slices.

Method: Adult male Sprague-Dawley rats were anaesthetised with chloral hydrate (400 mg/kg i.p.) and decapitated. Brain pontine slices (600 μ m) were obtained as previously described³. Single-unit extracellular recordings of LC neurons were carried out *in vitro*. We performed concentration-effect curves for different agonists of the EP₃ receptor until a maximal effect was reached, including sulprostone (EP₁/EP₃ agonist, 0.3-80 nM), the endogenous PGE₂ (0.3 nM-1.28 μ M) and the PGE₁analogue misoprostol (0.3-320 nM). The involvement of EP₃ receptor was tested by perfusing the selective EP₃ receptor antagonist L-798,106 (3-10 μ M), and compared to selective antagonists of EP₂ receptors (PF-04418948, 10 μ M) and EP₄ receptors (L-161982, 10 μ M). Data was analysed by one-way ANOVA followed by Dunnett's post hoc test.

Results: Increasing concentrations of sulprostone completely inhibited the firing rate of LC cells, with the EC₅₀ being 15 nM (n = 9). The EP₃ receptor antagonist L-798,106 induced a rightward shift (>8 fold) in the concentration-effect curve for sulprostone (n = 6, p < 0.001), but neither PF-04418948 nor L-161982 caused similar changes in the sulprostone effect (n = 4). Likewise, perfusion with PGE₂ or misoprostol induced a concentration-dependent inhibition of the neuronal activity of LC cells (EC₅₀ = 51 and 112 nM; n = 5 and n = 5; respectively). In both cases, only the EP₃ antagonist L-798,106 caused a rightward shift (>8 fold) in the concentration-effect curves for the prostanoid agonists (n = 5, p < 0.001).

Conclusion: LC neurons are regulated in an inhibitory manner by the prostanoid system, likely through the EP_3 receptor.

References: 1. Hétu PO and Riendeau D (2005). *Biochem J* **391**: 561-566. 2. Ek M *et al.* (2000). *J Comp Neurol* **428**: 5-20. 3. Pablos P *et al.* (2015). *Neuropharmacology* **99**: 422-431.