Long-term effects of treatment with hypothermia and cannabidiol in developing rats with hypoxicischemic brain injury

F. J. Alvarez¹, H. Lafuente¹, A. A. Alvarez², M. Revuelta², O. Arteaga², W. Hind³, E. Hilario², J. Martinez-Orgado⁴. ¹Biocruces Institute, Cruces University Hospital, Barakaldo, Spain, ²Cell Biology and Histology, University of the Basque Country, Leioa, Spain, ³GW Research, Histon, Cambridge, United Kingdom, ⁴Instituto del Niño y del Adolescente (INA), Hospital Clínico "San Carlos" - IdISSC, Madrid, Spain.

Introduction: Hypothermia is the standard treatment for hypoxic-ischemic (HI) newborns, but many treated infants present adverse long-term neurologic outcomes. Cannabidiol (CBD) could act through complementary mechanisms, thus improving the long-term outcomes in rats with experimental HI injury when used in combination with hypothermia¹.

Method: 7-day old rats (P7) underwent HI injury² and were randomized to receive normothermia (N) or hypothermia³ (H), as well as drug treatment with CBD (GW Research, Cambridge UK) 1 mg/kg (C) or its vehicle (V). Animals without brain injury or drug treatment were used as normothermic and hypothermic sham controls (NS, HS). Brain injury was assessed one month later⁴ (P37) by infarct volume percentage, neuropathological score, glutamate/N-acetyl-aspartate and N-acetyl-aspartate/choline ratios (excitotoxicity and motor outcome), electroencephalography and cognitive deficit (sensori-motor, learning & memory). Data are given as mean \pm SEM (n). Analysis was performed using the non-parametric Kruskal-Wallis test with Dunn correction.

Results: Structural, functional and cognitive data from juvenile animals (P37) after treatments are summarized in table 1.

(a) p<0.05 vs. NV group; (b) p<0.05 vs. NC group; (c) p<0.05 vs HV group						
Table 1	NS group	NV group	NC group	HS group	HV group	HC group
Infarct volume percentage (%)	0.0±0.0 ^a	22.2±0.5	14.3±0.3 ^a	0.0±0.0 ^c	17.2±0.4 ^{a,b}	10.7±0.2 ^{a,b,c}
	(5)	(5)	(5)	(5)	(5)	(5)
Neuropathological score:	0.4±0.3 ^a	4.0±0.4	2.5±0.3 ^a	0.2±0.2 ^c	3.2±0.2 ^a	1.4±0.3 ^{a,b,c}
hippocampus	(10)	(10)	(10)	(10)	(10)	(10)
Electroencephalography	19±1 ^a	10±1	17±2 ^a	19±1 ^c	14±1 ^a	17±1 ^{a,c}
(µV)	(10)	(10)	(10)	(10)	(10)	(10)
Glu/NAA ratio	1.2±0.1 ^a	1.8±0.1	1.2±0.2 ^a	1.0±0.2	1.0±0.1 ^a	1.0±0.1 ^a
	(5)	(5)	(5)	(5)	(5)	(5)
NAA/Cho ratio	8.5±0.1 ^a	3.0±0.2	4.4±0.6 ^a	9.6±0.1 ^c	8.2±0.2 ^{a,b}	9.8±0.3 ^{a,b,c}
	(5)	(5)	(5)	(5)	(5)	(5)
Rotarod:	259±12 ^a	95±13	217±22 ^a	262±10 ^c	152±14 ^{a,b}	218±5 ^{a,c}
latency to fall (sec)	(10)	(10)	(10)	(10)	(10)	(10)
T-maze:	64±8 ^a	30±5	52±10 ^a	66±7 ^c	37±4	56±5 ^{a,c}
correct response (%)	(10)	(10)	(10)	(10)	(10)	(10)

NV group developed a long-lasting functional impairment, as observed in infarct volume, neuropathology, electroencephalography and neurobehavioral tests. NC and HV groups showed improvements, optimized in HC group (combined therapies).

Conclusion: CBD administration to HI newborn rats led to a long-lasting neuroprotection in normothermia, but additional beneficial effects were observed when CBD was given in combination with hypothermia. The study suggests that CBD in combination with hypothermia may improve long-term neurologic outcomes.

References:

- I. Lafuente H *et al.* (2016). *Front Neurosci* 12: 323.
 Z. Fernandez-Lopez D *et al.* (2007). *Pediatr Res* 62: 255-260.
 Thoresen M *et al.* (1996). *Arch Dis Child* 74: F3-9.
 Pazos MR *et al.* (2012). *Neuropharmacology* 63: 776-783.