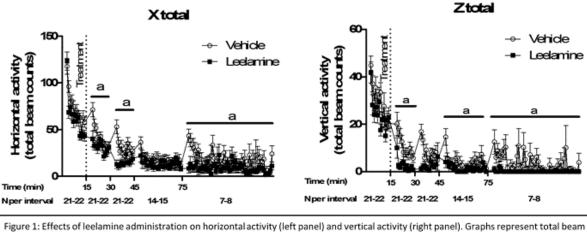
Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol17Issue1abst006P.pdf

## Leelamine, a low affinity CB<sub>1</sub> receptor ligand, has cannabinoid-like behavioural effects in rats


A. Llorente-Berzal, B. Harhen, W. A. Devane, D. P. Finn. Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland, Galway, Galway, Ireland.

*Introduction:* Leelamine ([(1R,4aS,10aR)-1,4a-Dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine) is a diterpene amine found in the pine tree<sup>1,2</sup>. In recent years, leelamine has been investigated for its anticancer activity in melanoma<sup>3</sup>. However, it was first discovered as a low-affinity CB<sub>1</sub> receptor (CB1R) ligand<sup>4</sup>. The aim of the present study was to further assess the cannabinoid-like pharmacological properties of leelamine in behavioural and radioligand binding studies.

*Method:* Male Sprague-Dawley rats (250-300g) were injected intraperitoneally with 25mg/kg leelamine or vehicle (1:1:18, ethanol:cremophor:saline) at time-point 0. At time-points (minutes) -15, 15, 30, 60 and 120 animals were tested in the hot-plate test ( $55^{\circ}C\pm1$ ) and their core body temperature was measured with a rectal probe. To measure catalepsy, a bar test was performed at time-point 15. Locomotor activity was assessed using a photo beam break system during the intervals between behavioural tests and injection. Binding experiments with [<sup>3</sup>H]leelamine and its displacement by either unlabelled leelamine or the cannabinoid receptor agonist CP55,940 were conducted using whole brain membranes from CB1R knockout mice. 10-12 µg of protein were incubated with 1200-1600cpm (80-105pM) of [<sup>3</sup>H]leelamine for 30 minutes. Bound and free radioligand were separated by centrifugation, and quantified using scintillation counting.

| <b>Table 1:</b> Results are express as Veh (mean±SEM) vs leelamine (mean±SEM). Number of animals treated with Veh-Leelamine is shown in parentheses. Student's t-test * P<0.05 veh vs leelamine. |                                                                   |    |    |                                           |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----|----|-------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                  | Time-points (minutes, relative to leelamine or vehicle injection) |    |    |                                           |                                        |
| Measurements                                                                                                                                                                                     | -15                                                               | 15 | 30 | 60                                        | 120                                    |
| Latency to first hind<br>paw lick (s)                                                                                                                                                            | 17.60±1.63 vs<br>19.72±1.47 (20-<br>21)                           |    |    | 16.28±1.82 vs<br>23.76±2.41 (14-<br>14) * | 13.64±2.08 vs<br>20.62±3.46 (7-<br>7)  |
| Core body<br>temperature, change<br>from baseline (°C)                                                                                                                                           |                                                                   |    |    | 0.63±0.34 vs -<br>1.49±0.41 (14-<br>15) * | 0.83±0.36 vs -<br>2.14±0.47 (7-8)<br>* |

**Results:** Acute administration of leelamine induced a significant antinociceptive effect, increasing the latency to hind paw lick in the hot-plate test during the first 60 minutes after leelamine administration (Table 1). Throughout the trial duration (120 minutes), leelamine-treated rats had significantly lower core body temperature (Table 1) and locomotor activity effect (Figure 1), compared with vehicle-treated controls. However, no significant effects were found in the bar test ( $1.63\pm0.21$ s vs  $2.06\pm0.33$ s; N=18-22). In brain membranes from CB1R knockout mice, [<sup>3</sup>H]leelamine exhibited specific binding and homologous displacement by unlabelled leelamine, but not by CP55,940.



counts every minute. Repeated measures ANOVA were performed on data within each of the intervals, a: effect of leelamine treatment.

*Conclusions:* The low affinity CB1R ligand leelamine exhibits cannabimimetic behavioural effects, but also binds to a site distinct from CB1R. Further research is needed to determine the identity of the non-CB1R binding site and whether it is involved in the behavioural effects of leelamine.

Acknowledgements: Funding from the Wellcome Trust, the Irish Research Council and the National University of Ireland Galway is gratefully acknowledged.

## **References:**

(1) Devane WA *et al.* (2007). In Obreza A (ed). 5<sup>th</sup> Joint Meeting on Med Chem. Slovenian Pharmaceutical Society: Slovenia, pp84.

(2) Gowda R, et al. (2014) Mol Cancer Ther. 13: 1679-1689.

(3) Kuzu OF et al. (2014). Mol Cancer Ther. 13: 1690-1703.

(4) Lovinger DM (2008). Handb Exp Pharmacol. 2008: 435-477.