Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Voll7Issue1abst021P.pdf

Identification of medium chain N-acyl glycines as GPR132 (G2A) receptor agonists

J. Foster¹, J. Harvey¹, A. J. Irving², A. J. Brown³. ¹University of Dundee, Dundee, United Kingdom, ²University College Dublin, Dublin, United Kingdom, ³Glaxo Smith Kline, Stevenage, United Kingdom.

Introduction: The N-acyl amides are a family of endogenous signalling lipid molecules typically consisting of an acyl chain conjugated to a biological amine (which may be dopamine, an amino acid, etc). The prototypical member of this family, N-arachidonoyl ethanolamine, exerts biological activity through the cannabinoid receptors ^[1]. We show that the activity of this family of molecule extends to the orphan GPR132 (G2A) receptor, by demonstrating agonist activity of medium chain N-acyl glycines.

Method: Rat Basophilic Leukemia (RBL) cells stably expressing human G2A(a) were loaded with Fura-2 AM and microfluorimetry experiments performed to measure agonist-induced calcium mobilisation. Data was analysed using unpaired students T-test to compare RBL-G2A with RBL parental. For yeast experiments, human, rat, mouse, and zebrafish G2A receptors were stably integrated into modified yeast strains containing yeast-human G-protein chimeras. Enzyme mediated hydrolysis of fluorescein di- β -D-glucopyranoside was used to measure agonist-dependent yeast growth ^[2]. The DiscoverX PathHunter assay was used to measure agonist-induced β arrestin-2 association with human and mouse G2A.

Result: In the calcium microflourimetry experiments N-linoleoyl glycine (NLG) had equal agonist potency as the reported G2A endogenous agonist 9-hydroxyoctadecadienoic acid (9-HODE) (Figure 1)^[3]. In yeast and β arrestin-2 association assays all G2A species orthologues tested were sensitive to medium chain N acyl-glycines (Table 1 and 2). N-palmitoyl glycine had higher potency than 9-HODE in the yeast assay, whereas 9-HODE was more potent than any medium chain N-acyl glycine tested in the β arrestin-2 association assays. Finally, we used a G2A antagonist to demonstrate inhibition of G2A agonism by N-acyl glycines on human G2A(a) (Figure 2).

Conclusion: We identify medium chain N-acyl glycines as agonists of the G2A receptor.

[1] Devane, W. A. et al. (1992). Science, 258(5090), 1946-1949.

[2] Dowell, S. J., & Brown, A. J. (2009). Methods Mol Biol, 552, 213-229. doi:10.1007/978-1-60327-317-6_15

[3] Obinata, H. et al. (2005). J Biol Chem, 280(49), 40676-40683. doi:10.1074/jbc.M507787200

Figure 1 Calcium transients taken from microfluorimetry experiments showing effect of (a) 9-HODE and (b) NLG on a field of RBL-G2A cells. Traces represent changes in fura-2 fluorescence ratio for individual cells. (c) Concentration-response relationship between 9-HODE and NLG on RBL-G2A cells. Data are mean peak responses ± SEM of 30 cells derived from three independent experiments. *=sig. diff. compared to un-transfected RBL cells (unpaired t-test P<0.05, 4 df, n=3).

Figure 2. Antagonism of N-acyl glycines on human G2A(a) by synthetic antagonist 795A in yeast assay. Data expressed as mean ± SD of four replicates.

G2A species										
orthologue										
N-Acyl	Human		Mouse							
Glycine	G2A(a)		G2A							
	pEC50	Emax	pEC50	Emax						
N-palmitoyl	5.37±0.58	2.53±1.02	n/a	n/a						
glycine	(n=4)		(n=3)							
N-linoleoyl	5.08±0.29	4.83±1.72	5.17±0.23	2.7±0.87						
glycine	(n=6)		(n=5)							
N-oleoyl	5.53±0.07	3.69±0.32	n/a	n/a						
glycine	(n=4)		(n=5)							
N-stearoyl	5.45±0.08	2.4±0.18	n/a	n/a						
glycine	(n=4)		(n=4)							
	5 3 4 9 4 9	12 05 2 57	5 22 2 2 24							
	5.34±0.13	13.96±2.67	5.33±0.21	5.22±1.24						
9-HODE	(n=/)		(n=6)	1						

Table 2. Summary of pEC50 ± SEM and Emax (fold of basal) ± SEM values for N-acyl glycines active on G2A species orthologues in DiscoverX PathHunter Barrestin assay.

· · · · · · · · · · · · · · · · · · ·												
G2A species												
orthologue												
N-Acyl	Human		Human		Mouse		Rat		Zebrafish		Zebrafish	
Glycine	G2A(a)		G2A(b)		G2A		G2A		G2A(a)		G2A(b)	
	pEC50	Emax	pEC50	Emax	pEC50	Emax	pEC50	Emax	pEC50	Emax	pEC50	Emax
N-palmitoyl	6.27±0.05	16.25±0.66	6.18±0.1	13.75±1.05	6.51±0.25	1.44±0.07	6.9±0.07	1.29±0.02	6.13±0.07	1.91±0.03	6.92±0.06	1.37±0.01
glycine	(n=7)	.	(n=5)	1	(n=5)		(n=7)		(n=4)	1	(n=4)	. !
		i		1						!		!
N-linoleoyl	5.81±0.06	15.33±0.98	5.81±0.08	1 9.8±0.82	6.17±0.16	1.22±0.03	6.11±0.08	1.51±0.05		1		1
glycine	(n=14)	I	(n=3)	I	(n=12)	1	(n=14)			i		۱ ₋
		. I		1						1		
N-oleoyl	5.23±0.05	11.74±0.59	5.41±0.08	5.55±0.38	5.6±1.66	1.48±0.8	5.95±0.07	1.34±0.03	5.69±0.05	1.58±0.02	6.15±0.1	1.46±0.03
glycine	(n=4)		(n=3)	1	(n=4)		(n=4)		(n=4)	1	(n=4)	
				1						1		
N-stearoyl	5.15±0.03	10.77±0.36	n/a	n/a	5.65±0.42	1.46±0.18	5.72±0.11	1.49±0.05	5.47±0.11	1.68±0.05	6.2±0.04	1.6±0.02
glycine	(n=4)		(n=3)	1	(n=4)		(n=4)		(n=4)	1	(n=4)	1
		1		1						1		1
	5.86±0.04	18.23±0.85	5.55±0.15	21.14±3.62			6.26±0.07	1.7±0.04		i		
9-HODE	(n=4)	1	(n=3)	1	n/a	n/a	(n=3)			1 1		

Table 1. Summary of pEC50±SEM and Emax (fold of basal) ± SEM values for N-acyl glycines active on G2A species orthologues in yeast assay. n/a = not active _____. = data not available.