## Effect of *Moringa oleifera* leaf extract on blood pressure and vascular reactivity to adrenergic stimulation in L-NAME hypertensive rats

P. Tangsucharit<sup>1</sup>, D. Aekthammarat<sup>1</sup>, P. Pakdeechote<sup>2</sup>, P. Pannangpetch<sup>1</sup>. <sup>1</sup>Pharmacology, Khon Kaen University, Khon Kaen, Thailand, <sup>2</sup>Physiology, Khon Kaen University, Khon Kaen, Thailand.

*Introduction:* Sympathetic overactivity resulting in increased total peripheral resistance plays a major role in pathogenesis of hypertension<sup>1</sup>. *Moringa oleifera* (MOE) (local name: Marum) is a tropical plant distributed in tropical/subtropical including Thailand. The leaf of *Moringa oleifera* is used in Thai folk medicine for the treatment of many ailments including cardiac and circulatory problems<sup>2</sup>. The present study aims to investigate the preventive effect of aqueous leaf extract of MOE on hemodynamic status and adrenergic reactivity in N<sup> $\omega$ </sup>-nitro-L-arginine-methylester (L-NAME) induced hypertensive rats.

*Methods:* Male Wistar rats (n=7/each group) were administered daily with L-NAME (50 mg/kg/day) in drinking water for three weeks and concurrent treatment with MOE (30 or 60 mg/kg, p.o.) or captopril (5 mg/kg/day, p.o.). At the end of experiment, blood pressure and heart rate (HR) were measured under pentobarbital sodium (60 mg/kg, i.p.) anesthesia. Contractile responses to perivascular nerve stimulation (PNS; 2-16 Hz) and exogenous phenylephrine (Phe; 0.01-1.0 mmol) were tested in isolated mesenteric vascular bed<sup>3</sup>. Data were expressed as mean  $\pm$  S.E.M. Statistical analysis was tested by one-way analysis of variance (ANOVA) and followed by Student Newman-Keul's test.

**Results:** Rats treated with L-NAME had higher BP and HR than the value in control rats. Concurrent treatment with MOE or captopril (5 mg/kg/day) prevented these alterations (Table 1, p<0.05). The hemodynamic disturbances were associated with augmented mesenteric reactivity to adrenergic stimulation including PNS and the selective  $\alpha_1$ -adrenoceptor agonist in L-NAME rats. Daily MOE-treatment at both low and high doses significantly reduced the reactivity to PNS to the normal levels (Fig.2A, p<0.05). Moreover, oral administration of MOE at doses of 30 and 60 mg/kg resulted in dose-dependent recovery of contractile responses to Phe in L-NAME rats (Fig.2B, p<0.05).

*Conclusion:* MOE prevents L-NAME induced hypertension in rats, which might involve the suppression of adrenergic hyperactivity. The current results could suggest that MOE might be useful as a dietary supplement against hypertension associated with sympathoexcitation.

References:

- 1. Koyama T et al.(2010). *Hypertens Res* **33(5)**: 485-91.
- 2. Randriamboavonjy JI et al. (2016). Am J Hypertens 29(7): 873-81.
- 3. Tangsucharit P et al. (2012). Am J Physiol Regul Integr Comp Physiol 303(11): R1147-56.



Figure 2 Effect of MOE on adrenergic reactivity to PNS (A) and Phe (B) in all experimental groups. Result are expressed as mean±SEM. n=7/ each group. <sup>\*</sup>P<0.05 vs. L-NAME group, <sup>†</sup>P<0.05 vs. L-NAME ± +MOE30 group

| Parameters        | Control                                               | Control+MOE      | L-NAME                                                    | L-<br>NAME+MOE30           | L-<br>NAME+MOE60                          | L-<br>NAME+Cap             |
|-------------------|-------------------------------------------------------|------------------|-----------------------------------------------------------|----------------------------|-------------------------------------------|----------------------------|
| SBP (mmHg)        | 122.9 ±<br>1.4                                        | $121.9 \pm 1.2$  | 193.6 ±<br>1.6*                                           | 175.7 ± 1.9* <sup>,#</sup> | 149.0 ± 1.8* <sup>,#</sup> , <sup>†</sup> | 161.7 ± 1.2* <sup>,#</sup> |
| DBP (mmHg)        | 83.0 ± 1.6                                            | $76.9 \pm 2.1$   | $\begin{array}{rrr} 137.5 & \pm \\ 2.8* & \end{array}$    | 110.5 ± 3.0* <sup>,#</sup> | $90.4 \pm 1.4^{\#},^{\dagger}$            | $114.3 \pm 4.7^{*,\#}$     |
| MAP (mmHg)        | 95.3 ± 1.1                                            | 91.8 ± 1.6       | $\begin{array}{ccc} 160.3 & \pm \\ 1.8^{*} & \end{array}$ | $134.8 \pm 3.6^{*,\#}$     | 109 ± 1.4* <sup>,#</sup> , <sup>†</sup>   | $126.8 \pm 2.7^{*,\#}$     |
| HR<br>(beats/min) | $\begin{array}{rrr} 380.9 & \pm \\ 3.6 & \end{array}$ | $395.5 \pm 13.4$ | 435.0 ±<br>2.9*                                           | $386.2 \pm 9.0^{\#}$       | 339.0 ± 7.3* <sup>,#</sup> , <sup>†</sup> | $373.3 \pm 3.3^{\#}$       |

Table 1 Effect of MOE on blood pressure and heart rate in L-NAME hypertensive rats