Evidence that human P2Y₁ and P2Y₁₂ receptors form heterodimers

M. SAFAR. SIPBS, University of Strathclyde, Glasgow, United Kingdom.

Introduction: $P2Y_1$ and $P2Y_{12}$ receptors belong to the class A family of transmembrane GPCRs that are activated by endogenous nucleotides¹. There is growing evidence that many GPCRs, including P2Y receptors, can exist as dimers or higher-order oligomers². For example, $P2Y_{12}$ and PAR4 receptors were recently reported to dimerise³. Our previous studies indicated that $P2Y_1$ and $P2Y_{12}$ receptors may form a functional heterodimer with novel pharmacological and signalling properties⁴. The aim of this project was, therefore, to characterise the physical interaction between $P2Y_1$ and $P2Y_{12}$ receptors.

Method: tSA201 cells were transfected or co-transfected with hP2Y $_1$ and hP2Y $_{12}$ receptors, tagged with HA or a fluorescent protein. Cellular localisation and co-localisation of the receptors were determined using confocal microscopy. Transfected cells were cultured in the absence or presence of the N-glycosylation inhibitor tunicamycin (2.0 μ g/ml) for 16 hours to determine the role of N-glycosylation in receptors expression. Receptor cell surface expression was quantified using ELISA. To investigate physical interaction between the two P2Y subtypes, co-immunoprecipitation was performed using anti-HA-agarose beads followed by immunoblotting with anti-GFP, anti-HA then alpha-Tubulin antibodies.

Result: Following transfection on their own or together, both receptors were localised mainly at the cell membrane, and this was unaffected by tunicamycin. Co-immunoprecipitation confirmed that $P2Y_1$ and $P2Y_{12}$ receptors associate physically. Each subtype enhanced the other's surface expressions. In particular, expression of the $P2Y_{12}$ receptor more than doubled that of $P2Y_1$ receptors at the cell surface.

Conclusion: These results show that $P2Y_1$ and $P2Y_{12}$ receptors are physically associated at the cell membrane and that they enhance each other's cell surface expressions. These results are consistent with our previous data indicating that $P2Y_1$ and $P2Y_{12}$ receptors form a functional heteromer.

References:

- 1. Kennedy C et al (2013) Future Med Chem 5: 431-449.
- 2. Milligan G, (2013) Mol Pharmacol 84: 158-169.
- 3. Smith T. H. et al. (2017) J Biol Chem 292(33): 13867-13878.
- 4. Shakya-Shrestha S et al. (2010) Mol.Cell Neurosci 43: 363-369.