Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/Vol8Issue1abst093P.pdf

GABA_B receptor subtypes differentially modulate chemoconvulsant-induced seizure

Ying Chen¹, Joshua Foster¹, Charlotte Mann¹, Irina Vinogradova¹, Ian Kitchen¹, Bernhard Bettler². ¹Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom, ²Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, CH-4056, Switzerland.

Epilepsy is a neurological disorder caused by imbalanced excitatory and inhibitory activities in the brain. $GABA_B$ receptors are the G-protein-coupled receptors for the inhibitory neurotransmitter GABA and its activation modulate both the excitatory and inhibitory synaptic transmission in the brain. $GABA_B$ receptors are strongly implicated in the genesis and spread of seizures¹, however, the precise roles of $GABA_B$ receptor subtypes that are located at different synaptic compartments² and neuronal networks are yet to be defined. In mice lacking either the $GABA_{B1a}$ or $GABA_{B1b}$ isoforms², we examined the roles of the $GABA_{B(1a,2)}$ and $GABA_{B(1b,2)}$ receptors in the development of seizure.

Epileptic behaviours in mice were triggered by an injection (subcutaneous route at 60 mg/kg) of a chemoconvulsant pentylenetetrazol (PTZ). Epileptic behaviours were monitored for 45 min and scored according to the modified severity scale (1, hypoactivity; 2, partial seizures; 3, generalised seizures; 4, tonic-clonic seizures; 5, mortality due to seizure). To examine the origin of the differences in epileptic behaviour, distributions of the GABA_{B(1a,2)} and GABA_{B(1b,2)} receptors in the brain were examined by immunolabelling of GABA_{B1} and GABA_{B2} proteins. In addition, the Schaffer collateral-CA1 field excitatory postsynaptic potentials (fEPSPs) and population spikes, were recorded using a multi-eletrode array system (MED64) in hippocampal slices and the modulation by GABA_B receptor activation was examined ³.

Seizures behaviours developed immediately after the injection of PTZ and progressed with increasing severity according to the scale. The mean maximum seizure scores were found to be 3.2 ± 0.2 for wild-type mice, 4.8 ± 0.2 for GABA_{B1a}^{-/-} and 3.3 ± 0.3 for GABA_{B1b}^{-/-} mice, showing significantly increased seizure severity in the GABA_{B1a}^{-/-} mice (p<0.01, one-way ANOVA). The GABA_{B(1a,2)} receptors may, therefore, be essential for the control of seizure activity. Functional heteromeric GABA_B receptors labelled by the GABA_{B2} antibody showed that the expression of GABA_{B(1a,2)} receptors in the GABA_{B1b}^{-/-} mice was uniform across the brain, but in the GABA_{B1a}^{-/-} mice, the GABA_{B(1b,2)} receptors were absent in the caudate putamen, globus pallidus, amygdala and CA3 stratum lucidum, which are brain areas potentially involved in the genesis and spread of seizure. In addition, in GABA_{B1a}^{-/-} mice, neither the fEPSPs or the population spike were significantly inhibited by the GABA_B receptor agonist, baclofen (50 µM, 95.0 ± 11.7 % of control); whereas baclofen significantly inhibited these activities in the wildtype (16.3 ± 3.2 % of control) and GABA_{B1b}^{-/-} mice (34.6 ± 4.3 % of control), confirming an essential role for the GABA_{B(1a,2)} receptors in heterosynaptic inhibition.

In conclusion, the $GABA_{B(1a,2)}$ receptor subtype is shown to play an essential role in the control of chemoconvulsant-induced seizure. The anatomical and synaptic localisation of the subtype may be responsible for the action. It is possible that deficits in the transcriptional and posttranslational mechanisms for GABA_{B1a} isoforms could lead to increased seizure susceptibility.

Bettler, B. et al. *Physiol Rev* **2004**, *84*, 835-67. Vigot, R. et al. *Neuron* **2006**, *50*, 589-601.

Chen, Y. et al. J Pharmacol Exp Ther 2006, 317, 1170-7.