Does biased agonism explain the discrepant pharmacology of ET-1 and S6b?

Janet Maguire, Rhoda Kuc, Lowell Ling, Anthony Davenport. University of Cambridge, Clinical Pharmacology Unit, CB20QQ, United Kingdom

We have previously reported discrepancies in the pharmacology of ET-1 and the snake toxin sarafotoxin 6b (S6b) that also binds to and activates ET_A and ET_B receptors (Maguire *et al.*, 1996). Although vasoconstrictor responses to the two agonists were similar in human isolated saphenous vein (that predominantly express ET_A receptors), cross-desensitisation experiments suggested S6b had lower efficacy than ET-1. Additionally, the ET_A selective antagonist BQ123 was a more effective blocker of S6b responses than ET-1, with the Schild-derived affinity of BQ123 dependent on the agonist used. Finally using saturation analysis we discovered that [1²⁵I]ET-1 identified a significantly larger population of ET receptors in vein homogenates than [1²⁵I]S6b. Based on these data we suggested that ET-1 may bind to an additional population of ET_A receptors that was insensitive to both BQ123 and S6b.

More recently, agonists and antagonists for some G-protein coupled receptors have been shown to demonstrate functional selectivity with respect to activation of signalling pathways. We considered whether this could explain the anomalies in the human ET_A pharmacology of S6b and BQ123. As an initial step we have compared the ability of ET and sarafotoxin peptides to recruit β -arrestin and determined whether this can be antagonised by BQ123 using the DiscoverX Pathhunter Express EDNRA β -arrestin GPCR assay.

CHO-K1 cells expressing human ET_A were incubated with BQ123 (1µM) or vehicle for 60 min at 37°C. ET peptides/sarafotoxins were added and incubated for a further 90 minutes after which the detection reagent was added and cells incubated for 2 hours at room temperature. The resulting chemiluminescent signal was measured and concentration-response curves to the agonists in the absence and presence of BQ123 expressed as relative light units (RLU).

	Control		+1µM BQ123	
	EC ₅₀ nM	E _{Max} (RLU)	EC₅₀ nM	E _{Max} (RLU)
ET-1	0.72	7.88x10 ⁵	130	5.43x10 ⁵
ET-2	1.65	6.80x10 ⁵	124	3.81x10 ⁵
ET-3	39.1	2.49x10 ⁵	Not determined	
S6b	1.51	3.33x10⁵	1521	2.73x10 ⁵
S6c	No response		Not determined	

Table 1. Potency (EC_{50}) and maximum response (E_{MAX}) of ET and sarafotoxin peptides in the absence (control) and presence of BQ123. Data are derived from 4-parameter logistic curves fitted to the mean of triplicate observations.

These data suggest that for recruitment of β -arrestin the order of agonist potency was ET-1≥ET-2=S6b>ET-3 as expected for an ET_A response and confirmed by the lack of response to the ET_B selective agonist S6c. However, the maximum response to S6b, and ET-3, was approximately half that of ET-1 and ET-2. This may be consistent with S6b activating only a subpopulation of ET_A receptors, as suggested by our saturation binding experiments. Or these data may support the hypothesis that S6b is a biased agonist that couples preferentially to G-protein mediated vasoconstriction but is less likely to cause ET_A receptor desensitisation via β -arrestin recruitment.

Maguire JJ, Kuc RE, Rous BA, Davenport AP (1996). Br J Pharmacol. 118:335-342.