A Chemical Characterisation Of Hydrogen Sulfide-Mediated Production Of Nitric Oxide From Nitrite And S-nitrosoalbumin

Maria Letizia Lo Faro¹, John More², Paul Winyard¹, Matthew Whiteman¹. ¹Peninsula Medical School, University of Exeter, Exeter, UK, ²BioProducts Laboratory, Elstree, UK.

Until recently nitrite (NO₂) has been considered just an inert metabolite of nitric oxide (\cdot NO). In fact it is an important biological reservoir of \cdot NO. NO₂ alters hypoxic signalling and vasodilation, and protects the vasculature after ischaemia-reperfusion injury.

S-nitrosothiols (RSNOs), another example of 'NO-derived species, have similarly gained great attention for their vasodilatory properties and vascular protective effects after ischaemic events. The mechanism suggested to explain both NO_2^- and RSNO-mediated effects is 'NO production. NO_2^- can be reduced to 'NO at low pH and low O_2 tension by xanthine oxidase, deoxyhaemoglobin, mitochondrial complexes and ascorbate.

Hydrogen sulfide (H_2S) is a recently discovered gasotransmitter which exerts many physiological effects similar to those of 'NO (e.g. vasodilation, promotion or inhibition of inflammation etc...)

The aim of this work was to test whether H_2S could promote 'NO production from NO_2 ' and RSNOs. We also examined whether H_2S was able to interact with NO_2 ' and RSNOs to affect cGMP production from human aortic smooth muscle cells (HASMC) and protect endothelial cells from oxidative stress-induced cytotoxicity.

NO production from NO₂⁻ and S-nitrosoalbumin (SNOA) was chemically characterised by electron paramagnetic resonance (EPR) spin trapping and the spin trap used for the experiments was the Fe²⁺ complex of N-methyl-D-glucamine dithiocarbamate (MGD). NO was also assessed by gas phase ozone-based chemiluminescence. In the EPR experiments H₂S was generated using the sulfide salt NaSH. On addition of H₂S to NO₂⁻, in the presence of the spin trap, a triplet EPR signal attributable to the NO-Fe²⁺-(MGD)₂ spin adduct was detected. Peak integration of the EPR spectra of spin-trapped 'NO showed that 5 min incubation (at room temperature) of 1 mM NO₂⁻ with 1 mM NaSH increased 'NO formation compared to NO₂⁻ alone, with increases of 25.8±7.7% (mean± SEM) and 22.7±7.0% at pH 4 and pH 7.4, respectively (n=4) (final 'NO concentrations in the presence of NaSH were 579 ± 67 μ M and 6.5 ± 1.9 μ M at pH 4 and 7.4 respectively). Chemiluminescence confirmed that H₂S rapidly reduced NO₂⁻ directly to 'NO, at pH 7.4 and that the reaction was thiol-dependent. Chemiluminescence also showed that, in the presence of NaSH, RSNO levels in SNOA significantly decreased (n=3, p<0.01, data analysed by 2-way ANOVA) almost as soon as the reagents were mixed together.

This work sets the basis to assess whether H_2S mediated-reduction of NO_2^- and RSNOs can be considered a physiologically relevant alternative pathway for 'NO production.