Activation of PPAR β/δ prevents the high glucose-induced impairment of cAMP-mediated relaxation in rat coronary arteries

Laura Moreno^{1,3}, Bianca Barreira^{1,3}, Javier Moral-Sanz^{1,3}, Enrique Moreno^{1,3}, Carmen Menendez^{1,3}, Rosario Jimenez², Juan Duarte², Francisco Perez-Vizcaino^{1,3}, Angel Cogolludo^{1,3}. ¹Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain, ²Department of Pharmacology, School of Pharmacy, Universidad de Garanada, Granada, Spain, ³Ciber Enfermedades Respiratorias, Madrid, Spain.

Activation of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) causes protective effects on obesity, insulin sensitivity and metabolic syndrome. Very recently, the PPAR β/δ agonist GW0742 has been shown to reduce endothelial dysfunction in spontaneously hypertensive rats (Zarzuelo *et al.,* 2011). Besides endothelial dysfunction, coronary arteries show a reduced cAMP-mediated dilation in experimental models of diabetes. We hypothesized that activation of PPAR β/δ may exert protective effects in the diabetic vascular dysfunction. Thus, the aim of the present study was to analyze the effects of PPAR β/δ activation on the altered relaxation to cAMP in coronary arteries following short term exposure to high glucose.

Male Wistar rats (250-280g) were killed by cervical dislocation. Coronary and pulmonary arteries (250-400 µm internal diameter) were incubated for 20 hours in medium containing normal ($5x10^{-3}$ M) or high ($30x10^{-3}$ M) glucose in the absence (DMSO, final concentration 0.1-0.2%) or the presence of the PPAR β/δ agonist GW0742 (10^{-6} M or 10^{-5} M) or GW0742 (10^{-5} M) plus the PPAR β/δ antagonist GSK0660 (10^{-6} M). Vascular reactivity was assessed using isometric wire myographs and potassium currents were recorded with the patch clamp technique. Statistical analysis for multiple comparisons was carried out by two-way ANOVA followed by Bonferroni post hoc test.

The relaxant response induced by the adenylate cyclase activator forskolin $(3x10^{-9} - 3x10^{-7} \text{ M})$ in arteries pretreated with serotonin (10^{-6} M) was reduced in high glucose-incubated vs low glucose-incubated coronary arteries $(60.5 \pm 7.6\% \text{ vs } 94.6 \pm 3.7\% \text{ relaxation at } 3x10^{-7} \text{ M p<0.01})$. Treatment with GW0742 (10^{-5} M) improved the relaxation to forskolin in high glucose-incubated coronary arteries $(93.9 \pm 8.5\% \text{ relaxation at } 3x10^{-6} \text{ M p>0.05} \text{ vs low glucose})$. This effect was prevented in arteries co-incubated with GSK0660 $(57.9 \pm 7.2\% \text{ relaxation at } 3x10^{-6} \text{ M p<0.01} \text{ vs low glucose})$. The Kv1 channel blocker DPO-1 (10^{-6} M) inhibited the relaxation induced by forskolin in coronary arteries incubated with low glucose or with high glucose + GW0742. However, this drug did not affect the relaxation induced by forskolin in coronary arteries incubated with high glucose $(45.1 \pm 6.6\%)$. Accordingly, DPO inhibited Kv currents in coronary arteries incubated with low glucose but not in those incubated with high glucose $(41 \pm 9\% \text{ and } 1.4 \pm 11\% \text{ inhibition at } +40\text{mV}, \text{ respectively})$. In pulmonary arteries. The relaxation induced by forskolin was similar after incubation with low glucose, high glucose or high glucose + GW0742 (82.5 \pm 5\%, 93 \pm 12\% \text{ and } 80\pm 6\% \text{ relaxation at } 3x10^{-7} \text{ M}, \text{ respectively}). Moreover, DPO-1 did not affect the relaxant response induced by forskolin in these arteries.

In conclusion, activation of PPAR β/δ prevents high glucose-induced alteration of cAMP relaxation in coronary arteries. This improvement appears to be partly due to the ability of the PPAR β/δ agonist to restore a relaxant component which depends on Kv1 channel function.

Zarzuelo MJ *et al.*, (2011). *Hypertension* **58**:733-43. Supported by SAF2010-22066.